58 research outputs found

    Comparing MapReduce and pipeline implementations for counting triangles

    Get PDF
    A generalized method to define the Divide & Conquer paradigm in order to have processors acting on its own data and scheduled in a parallel fashion. MapReduce is a programming model that follows this paradigm, and allows for the definition of efficient solutions by both decomposing a problem into steps on subsets of the input data and combining the results of each step to produce final results. Albeit used for the implementation of a wide variety of computational problems, MapReduce performance can be negatively affected whenever the replication factor grows or the size of the input is larger than the resources available at each processor. In this paper we show an alternative approach to implement the Divide & Conquer paradigm, named pipeline. The main features of pipeline are illustrated on a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To evaluate the properties of pipeline, a dynamic pipeline of processes and an ad-hoc version of MapReduce are implemented in the language Go, exploiting its ability to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different sizes and densities. Observed results suggest that pipeline allows for the implementation of an efficient solution of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.Peer ReviewedPostprint (published version

    Efficient computation of the Weighted Clustering Coefficient

    Get PDF
    The clustering coefficient of an unweighted network has been extensively used to quantify how tightly connected is the neighbor around a node and it has been widely adopted for assessing the quality of nodes in a social network. The computation of the clustering coefficient is challenging since it requires to count the number of triangles in the graph. Several recent works proposed efficient sampling, streaming and MapReduce algorithms that allow to overcome this computational bottleneck. As a matter of fact, the intensity of the interaction between nodes, that is usually represented with weights on the edges of the graph, is also an important measure of the statistical cohesiveness of a network. Recently various notions of weighted clustering coefficient have been proposed but all those techniques are hard to implement on large-scale graphs. In this work we show how standard sampling techniques can be used to obtain efficient estimators for the most commonly used measures of weighted clustering coefficient. Furthermore we also propose a novel graph-theoretic notion of clustering coefficient in weighted networks. © 2016, Copyright © Taylor & Francis Group, LL

    Triadic Measures on Graphs: The Power of Wedge Sampling

    Full text link
    Graphs are used to model interactions in a variety of contexts, and there is a growing need to quickly assess the structure of a graph. Some of the most useful graph metrics, especially those measuring social cohesion, are based on triangles. Despite the importance of these triadic measures, associated algorithms can be extremely expensive. We propose a new method based on wedge sampling. This versatile technique allows for the fast and accurate approximation of all current variants of clustering coefficients and enables rapid uniform sampling of the triangles of a graph. Our methods come with provable and practical time-approximation tradeoffs for all computations. We provide extensive results that show our methods are orders of magnitude faster than the state-of-the-art, while providing nearly the accuracy of full enumeration. Our results will enable more wide-scale adoption of triadic measures for analysis of extremely large graphs, as demonstrated on several real-world examples

    Massively Parallel Algorithms for Small Subgraph Counting

    Get PDF
    • …
    corecore