24 research outputs found

    Large NN Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d2d\geq 2

    Full text link
    We review an approach which aims at studying discrete (pseudo-)manifolds in dimension d2d\geq 2 and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of pp-angulations to higher dimensions. To do so, we consider families of triangulations built out of simplices with colored faces. Those simplices can be glued to form new building blocks, called bubbles which are pseudo-manifolds with boundaries. Bubbles can in turn be glued together to form triangulations. The main challenge is to classify the triangulations built from a given set of bubbles with respect to their numbers of bubbles and simplices of codimension two. While the colored triangulations which maximize the number of simplices of codimension two at fixed number of simplices are series-parallel objects called melonic triangulations, this is not always true anymore when restricting attention to colored triangulations built from specific bubbles. This opens up the possibility of new universality classes of colored triangulations. We present three existing strategies to find those universality classes. The first two strategies consist in building new bubbles from old ones for which the problem can be solved. The third strategy is a bijection between those colored triangulations and stuffed, edge-colored maps, which are some sort of hypermaps whose hyperedges are replaced with edge-colored maps. We then show that the present approach can lead to enumeration results and identification of universality classes, by working out the example of quartic tensor models. They feature a tree-like phase, a planar phase similar to two-dimensional quantum gravity and a phase transition between them which is interpreted as a proliferation of baby universes

    Random Tensors and Quantum Gravity

    Full text link
    We provide an informal introduction to tensor field theories and to their associated renormalization group. We focus more on the general motivations coming from quantum gravity than on the technical details. In particular we discuss how asymptotic freedom of such tensor field theories gives a concrete example of a natural "quantum relativity" postulate: physics in the deep ultraviolet regime becomes asymptotically more and more independent of any particular choice of Hilbert basis in the space of states of the universe.Comment: Section 6 is essentially reproduced from author's arXiv:1507.04190 for self-contained purpose of the revie

    Random Tensors and Quantum Gravity

    Full text link

    A New Large N Expansion for General Matrix-Tensor Models

    Full text link
    We define a new large NN limit for general O(N)R\text{O}(N)^{R} or U(N)R\text{U}(N)^{R} invariant tensor models, based on an enhanced large NN scaling of the coupling constants. The resulting large NN expansion is organized in terms of a half-integer associated with Feynman graphs that we call the index. This index has a natural interpretation in terms of the many matrix models embedded in the tensor model. Our new scaling can be shown to be optimal for a wide class of non-melonic interactions, which includes all the maximally single-trace terms. Our construction allows to define a new large DD expansion of the sum over diagrams of fixed genus in matrix models with an additional O(D)r\text{O}(D)^{r} global symmetry. When the interaction is the complete vertex of order R+1R+1, we identify in detail the leading order graphs for RR a prime number. This slightly surprising condition is equivalent to the complete interaction being maximally single-trace.Comment: 57 pages, 20 figures (additional discussion in Sec. 4.1.1. and additional figure (Fig. 5)
    corecore