45 research outputs found

    Selected topics in algorithmic geometry

    Get PDF
    Let P be a set of n points on the plane with no three points on a line. A crossing-free structure on P is a straight-edge plane graph whose vertex set is P. In this thesis we consider problems of two different topics in the area of algorithmic geometry: Geometry using Steiner points, and counting algorithms. These topics have certain crossing-free structures on P as our primary objects of study. Our results can roughly be described as follows: i) Given a k-coloring of P, with k >= 3 colors, we will show how to construct a set of Steiner points S = S(P) such that a k-colored quadrangulation can always be constructed on (P U S). The bound we show of |S| significantly improves on previously known results. ii) We also show how to construct a se S = S(P) of Steiner points such that a triangulation of (P U S) having all its vertices of even (odd) degree can always be constructed. We show that |S| <= n/3 + c, where c is a constant. We also look at other variants of this problem. iii) With respect to counting algorithms, we show new algorithms for counting triangulations, pseudo-triangulations, crossing-free matchings and crossing-free spanning cycles on P. Our algorithms are simple and allow good analysis of their running times. These algorithms significantly improve over previously known results. We also show an algorithm that counts triangulations approximately, and a hardness result of a particular instance of the problem of counting triangulations exactly. iv) We show experiments comparing our algorithms for counting triangulations with another well-known algorithm that is supposed to be very fast in practice.Sei P eine Menge von n Punkte in der Ebene, so dass keine drei Punkten auf einer Geraden liegen. Eine kreuzungsfreie Struktur von P ist ein geradliniger ebener Graph, der P als Knotenmenge hat. In dieser Dissertation behandeln wir zwei verschiedene Problemkreise auf dem Gebiet der algorithmischen Geometrie: Geometrie mit Steinerpunkten und Anzahl bestimmende Algorithmen auf P und auf gewissen kreuzungsfreien Strukturen von P. Unsere Resultate können wie folgt beschrieben werden: i) Gegeben sei eine k-Färbung von P, mit k >= 3 Farben. Es wird gezeigt, wie eine Menge S = S(P) von Steiner Punkten konstruiert werden kann, die die Konstruktion einer k-gefärbten Quadrangulierung von (P U S) ermöglicht. Die von uns gezeigte Schranke für |S| verbessert die bisher bekannte Schranke. ii) Gezeigt wird auch die Konstruktion einer Menge S = S(P) von Steiner Punkten, so dass eine Triangulierung von (P U S) konstruiert werden kann, bei der der Grad aller Knoten gerade (ungerade) ist. Wir zeigen, dass |S| <= n/3 + c möglich ist, wobei c eine Konstante ist. Wir betrachten auch andere Varianten dieses Problems. iii) Was die Anzahl bestimmenden Algorithmen betrifft, zeigen wir neue Algorithmen, um Triangulierungen, Pseudotriangulierungen, kreuzungsfreie Matchings und kreuzungsfreie aufspannende Zyklen von P zu zählen. Unsere Algorithmen sind einfach und lassen eine gute Analyse der Laufzeiten zu. Diese neuen Algorithmen verbessern wesentlich die bisherigen Ergebnisse. Weiter zeigen wir einen Algorithmus, der Triangulierungen approximativ zählt, und bestimmen die Komplexitätsklasse einer bestimmten Variante des Problems des exakten Zählens von Triangulierungen. iv) Wir zeigen Experimente, die unsere triangulierungszählenden Algorithmen mit einem anderen bekannten Algorithmus vergleichen, der in der Praxis als besonders schnell bekannt ist

    Connectivity Control for Quad-Dominant Meshes

    Get PDF
    abstract: Quad-dominant (QD) meshes, i.e., three-dimensional, 2-manifold polygonal meshes comprising mostly four-sided faces (i.e., quads), are a popular choice for many applications such as polygonal shape modeling, computer animation, base meshes for spline and subdivision surface, simulation, and architectural design. This thesis investigates the topic of connectivity control, i.e., exploring different choices of mesh connectivity to represent the same 3D shape or surface. One key concept of QD mesh connectivity is the distinction between regular and irregular elements: a vertex with valence 4 is regular; otherwise, it is irregular. In a similar sense, a face with four sides is regular; otherwise, it is irregular. For QD meshes, the placement of irregular elements is especially important since it largely determines the achievable geometric quality of the final mesh. Traditionally, the research on QD meshes focuses on the automatic generation of pure quadrilateral or QD meshes from a given surface. Explicit control of the placement of irregular elements can only be achieved indirectly. To fill this gap, in this thesis, we make the following contributions. First, we formulate the theoretical background about the fundamental combinatorial properties of irregular elements in QD meshes. Second, we develop algorithms for the explicit control of irregular elements and the exhaustive enumeration of QD mesh connectivities. Finally, we demonstrate the importance of connectivity control for QD meshes in a wide range of applications.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Peeling and Nibbling the Cactus: Subexponential-Time Algorithms for Counting Triangulations and Related Problems

    Get PDF
    Given a set of n points S in the plane, a triangulation T of S is a maximal set of non-crossing segments with endpoints in S. We present an algorithm that computes the number of triangulations on a given set of n points in time n^{ (11+ o(1)) sqrt{n} }, significantly improving the previous best running time of O(2^n n^2) by Alvarez and Seidel [SoCG 2013]. Our main tool is identifying separators of size O(sqrt{n}) of a triangulation in a canonical way. The definition of the separators are based on the decomposition of the triangulation into nested layers ("cactus graphs"). Based on the above algorithm, we develop a simple and formal framework to count other non-crossing straight-line graphs in n^{O(sqrt{n})} time. We demonstrate the usefulness of the framework by applying it to counting non-crossing Hamilton cycles, spanning trees, perfect matchings, 3-colorable triangulations, connected graphs, cycle decompositions, quadrangulations, 3-regular graphs, and more

    Peeling and nibbling the cactus: Subexponential-time algorithms for counting triangulations and related problems

    Get PDF
    Given a set of nn points SS in the plane, a triangulation TT of SS is a maximal set of non-crossing segments with endpoints in SS. We present an algorithm that computes the number of triangulations on a given set of nn points in time n(11+o(1))nn^{(11+ o(1))\sqrt{n} }, significantly improving the previous best running time of O(2nn2)O(2^n n^2) by Alvarez and Seidel [SoCG 2013]. Our main tool is identifying separators of size O(n)O(\sqrt{n}) of a triangulation in a canonical way. The definition of the separators are based on the decomposition of the triangulation into nested layers ("cactus graphs"). Based on the above algorithm, we develop a simple and formal framework to count other non-crossing straight-line graphs in nO(n)n^{O(\sqrt{n})} time. We demonstrate the usefulness of the framework by applying it to counting non-crossing Hamilton cycles, spanning trees, perfect matchings, 33-colorable triangulations, connected graphs, cycle decompositions, quadrangulations, 33-regular graphs, and more.Comment: 47 pages, 23 Figures, to appear in SoCG 201

    Exploring quadrangulations

    Full text link

    Easy Integral Surfaces: A Fast, Quad-based Stream and Path Surface Algorithm

    Get PDF
    a fast, quad-based stream and path surface algorith

    Growing Urban Bicycle Networks

    Get PDF
    Cycling is a promising solution to unsustainable urban transport systems. However, prevailing bicycle network development follows a slow and piecewise process, without taking into account the structural complexity of transportation networks. Here we explore systematically the topological limitations of urban bicycle network development. For 62 cities we study different variations of growing a synthetic bicycle network between an arbitrary set of points routed on the urban street network. We find initially decreasing returns on investment until a critical threshold, posing fundamental consequences to sustainable urban planning: Cities must invest into bicycle networks with the right growth strategy, and persistently, to surpass a critical mass. We also find pronounced overlaps of synthetically grown networks in cities with well-developed existing bicycle networks, showing that our model reflects reality. Growing networks from scratch makes our approach a generally applicable starting point for sustainable urban bicycle network planning with minimal data requirements.Comment: Main text: 14 pages, 7 figures. Website: http://growbike.ne
    corecore