785 research outputs found

    Presentation of the 9th Edition of the Model Checking Contest.

    Get PDF
    International audience; The Model Checking Contest (MCC) is an annual competition of software tools for model checking. Tools must process an increasing benchmark gathered from the whole community and may participate in various examinations: state space generation, computation of global properties, computation of some upper bounds in the model, evaluation of reachability formulas, evaluation of CTL formulas, and evaluation of LTL formulas.For each examination and each model instance, participating tools are provided with up to 3600 s and 16 gigabyte of memory. Then, tool answers are analyzed and confronted to the results produced by other competing tools to detect diverging answers (which are quite rare at this stage of the competition, and lead to penalties).For each examination, golden, silver, and bronze medals are attributed to the three best tools. CPU usage and memory consumption are reported, which is also valuable information for tool developers

    Proceedings of SUMo and CompoNet 2011

    Get PDF
    International audienc

    Ninth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 20-22, 2008

    Get PDF
    This booklet contains the proceedings of the Ninth Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 20-22, 2008. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0

    starMC: an automata based CTL* model checker

    Get PDF
    Model-checking of temporal logic formulae is a widely used technique for the verification of systems. CTL [Image: see text] is a temporal logic that allows to consider an intermix of both branching behaviours (like in CTL) and linear behaviours (LTL), overcoming the limitations of LTL (that cannot express “possibility”) and CTL (cannot fully express fairness). Nevertheless CTL [Image: see text] model-checkers are uncommon. This paper presents (1) the algorithms for a fully symbolic automata-based approach for CTL [Image: see text] , and (2) their implementation in the open-source tool starMC, a CTL [Image: see text] model checker for systems specified as Petri nets. Testing has been conducted on thousands of formulas over almost a hundred models. The experiments show that the fully symbolic automata-based approach of starMC can compute the set of states that satisfy a CTL [Image: see text] formula for very large models (non trivial formulas for state spaces larger than 10(480) states are evaluated in less than a minute)
    corecore