779 research outputs found

    Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network.

    Get PDF
    Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions

    Integrative methods for analyzing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of ā€œBig Dataā€ in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face

    Prioritizing human cancer microRNAs based on genesā€™ functional consistency between microRNA and cancer

    Get PDF
    The identification of human cancer-related microRNAs (miRNAs) is important for cancer biology research. Although several identification methods have achieved remarkable success, they have overlooked the functional information associated with miRNAs. We present a computational framework that can be used to prioritize human cancer miRNAs by measuring the association between cancer and miRNAs based on the functional consistency score (FCS) of the miRNA target genes and the cancer-related genes. This approach proved successful in identifying the validated cancer miRNAs for 11 common human cancers with area under ROC curve (AUC) ranging from 71.15% to 96.36%. The FCS method had a significant advantage over miRNA differential expression analysis when identifying cancer-related miRNAs with a fine regulatory mechanism, such as miR-27a in colorectal cancer. Furthermore, a case study examining thyroid cancer showed that the FCS method can uncover novel cancer-related miRNAs such as miR-27a/b, which were showed significantly upregulated in thyroid cancer samples by qRT-PCR analysis. Our method can be used on a web-based server, CMP (cancer miRNA prioritization) and is freely accessible at http://bioinfo.hrbmu.edu.cn/CMP. This time- and cost-effective computational framework can be a valuable complement to experimental studies and can assist with future studies of miRNA involvement in the pathogenesis of cancers

    Integrated transcriptional profiling and genomic analyses reveal RPN2 and HMGB1 as promising biomarkers in colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is a heterogeneous disease that is associated with a gradual accumulation of genetic and epigenetic alterations. Among all CRC stages, stage II tumors are highly heterogeneous with a high relapse rate in about 20-25 % of stage II CRC patients following surgery. Thus, a comprehensive analysis of gene signatures to identify aggressive and metastatic phenotypes in stage II CRC is desired for a more accurate disease classification and outcome prediction. By utilizing a Cancer Array, containing 440 oncogenes and tumor suppressors to profile mRNA expression, we identified a larger number of differentially expressed genes in poorly differentiated stage II colorectal adenocarcinoma tissues, compared to their matched normal tissues. Ontology and Ingenuity Pathway Analysis (IPA) indicated that these genes are involved in functional mechanisms associated with several transcription factors. Genomic alterations of these genes were also investigated through The Cancer Genome Atlas (TCGA) database, utilizing 195 published CRC specimens. The percentage of genomic alterations in these genes was ranked based on their mRNA expression, copy number variations and mutations. This data was further combined with published microarray studies from a large set of CRC tumors classified based on prognostic features. This led to the identification of eight candidate genes including RPN2, HMGB1, AARS, IGFBP3, STAT1, HYOU1, NQO1 and PEA15 that were associated with the progressive phenotype. In particular, RPN2 and HMGB1 displayed a higher genomic alteration frequency in CRC, compared to eight other major solid cancers. Immunohistochemistry was performed on additional 78 stage I-IV CRC samples, where RPN2 protein immunostaining exhibited a significant association with stage III/IV tumors, distant metastasis, and poor differentiation, indicating that RPN2 expression is associated with poor prognosis. Further, our study revealed significant transcriptional regulatory mechanisms, networks and gene signatures, underlying CRC malignant progression and phenotype warranting future clinical investigations.published_or_final_versio

    Determination of strongly overlapping signaling activity from microarray data

    Get PDF
    BACKGROUND: As numerous diseases involve errors in signal transduction, modern therapeutics often target proteins involved in cellular signaling. Interpretation of the activity of signaling pathways during disease development or therapeutic intervention would assist in drug development, design of therapy, and target identification. Microarrays provide a global measure of cellular response, however linking these responses to signaling pathways requires an analytic approach tuned to the underlying biology. An ongoing issue in pattern recognition in microarrays has been how to determine the number of patterns (or clusters) to use for data interpretation, and this is a critical issue as measures of statistical significance in gene ontology or pathways rely on proper separation of genes into groups. RESULTS: Here we introduce a method relying on gene annotation coupled to decompositional analysis of global gene expression data that allows us to estimate specific activity on strongly coupled signaling pathways and, in some cases, activity of specific signaling proteins. We demonstrate the technique using the Rosetta yeast deletion mutant data set, decompositional analysis by Bayesian Decomposition, and annotation analysis using ClutrFree. We determined from measurements of gene persistence in patterns across multiple potential dimensionalities that 15 basis vectors provides the correct dimensionality for interpreting the data. Using gene ontology and data on gene regulation in the Saccharomyces Genome Database, we identified the transcriptional signatures of several cellular processes in yeast, including cell wall creation, ribosomal disruption, chemical blocking of protein synthesis, and, criticially, individual signatures of the strongly coupled mating and filamentation pathways. CONCLUSION: This works demonstrates that microarray data can provide downstream indicators of pathway activity either through use of gene ontology or transcription factor databases. This can be used to investigate the specificity and success of targeted therapeutics as well as to elucidate signaling activity in normal and disease processes

    Falsifiable Network Models. A Network-based Approach to Predict Treatment Efficacy in Ulcerative Colitis

    Get PDF
    This work is focused on understanding the treatment efficacy of patients with ulcerative colitis (UC) using a network-based approach. UC is one of two forms of inflammatory bowel disease (IBD) along with Crohnā€™s disease. UC is a debilitating condition characterized by chronic inflammation and ulceration of the colon and rectum. UC symptoms occur gradually rather than abruptly, and the degree of symptoms differs across UC patients. Only around 20% of all UC cases can be explained by known genetic variations, implying a more ambiguous aetiology that is yet not fully understood but is thought to involve a complex interplay between genetic and environmental factors. The available therapy for UC substantially reduces symptoms and achieves long-term remission. However, about one-third of UC patients fail to respond to anti-TNFĪ± therapy and consequently develop long-term side effects due to medication. Non-response to existing antibody-based therapies in subgroups of UC patients is a major challenge and incurs a healthcare burden. Therefore, the disease markers for predicting therapy response to assist individualized therapy decisions are needed. To date, no quantitative computational framework is available to predict treatment response in UC. We developed a quantitative framework that uses gene expression data and existing biological background information on signalling pathways to quantify network connectivity from receptors to transcription factors (TF) that are involved in UC pathogenesis. Variations in network connectivity in UC patients can be used to identify responders and non-responders to anti-TNFĪ± and anti-Integrin treatment. Our findings allow us to summarize the effect of small gene expression changes on the overall connectivity of a signalling network and estimate the effect this will have on the individual patients' responses. Estimating the network connectivity associated with varied drug responses may provide an understanding of individualized treatment outcomes. Our model could be used to generate testable hypotheses about how individual genes act together in networks to cause inflammation in UC as well as other immune-inflammatory diseases such as psoriasis, asthma, and rheumatoid arthritis

    Leveraging big data resources and data integration in biology: applying computational systems analyses and machine learning to gain insights into the biology of cancers

    Get PDF
    Recently, many "molecular profiling" projects have yielded vast amounts of genetic, epigenetic, transcription, protein expression, metabolic and drug response data for cancerous tumours, healthy tissues, and cell lines. We aim to facilitate a multi-scale understanding of these high-dimensional biological data and the complexity of the relationships between the different data types taken from human tumours. Further, we intend to identify molecular disease subtypes of various cancers, uncover the subtype-specific drug targets and identify sets of therapeutic molecules that could potentially be used to inhibit these targets. We collected data from over 20 publicly available resources. We then leverage integrative computational systems analyses, network analyses and machine learning, to gain insights into the pathophysiology of pancreatic cancer and 32 other human cancer types. Here, we uncover aberrations in multiple cell signalling and metabolic pathways that implicate regulatory kinases and the Warburg effect as the likely drivers of the distinct molecular signatures of three established pancreatic cancer subtypes. Then, we apply an integrative clustering method to four different types of molecular data to reveal that pancreatic tumours can be segregated into two distinct subtypes. We define sets of proteins, mRNAs, miRNAs and DNA methylation patterns that could serve as biomarkers to accurately differentiate between the two pancreatic cancer subtypes. Then we confirm the biological relevance of the identified biomarkers by showing that these can be used together with pattern-recognition algorithms to infer the drug sensitivity of pancreatic cancer cell lines accurately. Further, we evaluate the alterations of metabolic pathway genes across 32 human cancers. We find that while alterations of metabolic genes are pervasive across all human cancers, the extent of these gene alterations varies between them. Based on these gene alterations, we define two distinct cancer supertypes that tend to be associated with different clinical outcomes and show that these supertypes are likely to respond differently to anticancer drugs. Overall, we show that the time has already arrived where we can leverage available data resources to potentially elicit more precise and personalised cancer therapies that would yield better clinical outcomes at a much lower cost than is currently being achieved
    • ā€¦
    corecore