15,045 research outputs found

    Color image segmentation using a self-initializing EM algorithm

    Get PDF
    This paper presents a new method based on the Expectation-Maximization (EM) algorithm that we apply for color image segmentation. Since this algorithm partitions the data based on an initial set of mixtures, the color segmentation provided by the EM algorithm is highly dependent on the starting condition (initialization stage). Usually the initialization procedure selects the color seeds randomly and often this procedure forces the EM algorithm to converge to numerous local minima and produce inappropriate results. In this paper we propose a simple and yet effective solution to initialize the EM algorithm with relevant color seeds. The resulting self initialised EM algorithm has been included in the development of an adaptive image segmentation scheme that has been applied to a large number of color images. The experimental data indicates that the refined initialization procedure leads to improved color segmentation

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    Evaluation of Statistical Features for Medical Image Retrieval

    Get PDF
    In this paper we present a complete system allowing the classification of medical images in order to detect possible diseases present in them. The proposed method is developed in two distinct stages: calculation of descriptors and their classification. In the first stage we compute a vector of thirty-three statistical features: seven are related to statistics of the first level order, fifteen to that of second level where thirteen are calculated by means of co-occurrence matrices and two with absolute gradient; the last thirteen finally are calculated using run-length matrices. In the second phase, using the descriptors already calculated, there is the actual image classification. Naive Bayes, RBF, Support VectorMa- chine, K-Nearest Neighbor, Random Forest and Random Tree classifiers are used. The results obtained from the proposed system show that the analysis carried out both on textured and on medical images lead to have a high accuracy

    Automatic segmentation of skin cancer images using adaptive color clustering

    Get PDF
    This paper presents the development of an adaptive image segmentation algorithm designed for the identification of the skin cancer and pigmented lesions in dermoscopy images. The key component of the developed algorithm is the Adaptive Spatial K-Means (A-SKM) clustering technique that is applied to extract the color features from skin cancer images. Adaptive-SKM is a novel technique that includes the primary features that describe the color smoothness and texture complexity in the process of pixel assignment. The A-SKM has been included in the development of a flexible color-texture image segmentation scheme and the experimental data indicates that the developed algorithm is able to produce accurate segmentation when applied to a large number of skin cancer (melanoma) images
    corecore