7,687 research outputs found

    Fusing MPEG-7 visual descriptors for image classification

    Get PDF
    This paper proposes three content-based image classification techniques based on fusing various low-level MPEG-7 visual descriptors. Fusion is necessary as descriptors would be otherwise incompatible and inappropriate to directly include e.g. in a Euclidean distance. Three approaches are described: A “merging” fusion combined with an SVM classifier, a back-propagation fusion combined with a KNN classifier and a Fuzzy-ART neurofuzzy network. In the latter case, fuzzy rules can be extracted in an effort to bridge the “semantic gap” between the low-level descriptors and the high-level semantics of an image. All networks were evaluated using content from the repository of the aceMedia project1 and more specifically in a beach/urban scene classification problem

    A comparative evaluation of interactive segmentation algorithms

    Get PDF
    In this paper we present a comparative evaluation of four popular interactive segmentation algorithms. The evaluation was carried out as a series of user-experiments, in which participants were tasked with extracting 100 objects from a common dataset: 25 with each algorithm, constrained within a time limit of 2 min for each object. To facilitate the experiments, a “scribble-driven” segmentation tool was developed to enable interactive image segmentation by simply marking areas of foreground and background with the mouse. As the participants refined and improved their respective segmentations, the corresponding updated segmentation mask was stored along with the elapsed time. We then collected and evaluated each recorded mask against a manually segmented ground truth, thus allowing us to gauge segmentation accuracy over time. Two benchmarks were used for the evaluation: the well-known Jaccard index for measuring object accuracy, and a new fuzzy metric, proposed in this paper, designed for measuring boundary accuracy. Analysis of the experimental results demonstrates the effectiveness of the suggested measures and provides valuable insights into the performance and characteristics of the evaluated algorithms

    An Integrated Content and Metadata based Retrieval System for Art

    No full text
    In this paper we describe aspects of the Artiste project to develop a distributed content and metadata based analysis, retrieval and navigation system for a number of major European Museums. In particular, after a brief overview of the complete system, we describe the design and evaluation of some of the image analysis algorithms developed to meet the specific requirements of the users from the museums. These include a method for retrievals based on sub images, retrievals based on very low quality images and retrieval using craquelure type

    Image mining: issues, frameworks and techniques

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in significantly large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. Despite the development of many applications and algorithms in the individual research fields cited above, research in image mining is still in its infancy. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining at the end of this paper

    Image mining: trends and developments

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining

    Fuzzy aesthetic semantics description and extraction for art image retrieval

    Get PDF
    AbstractMore and more digitized art images are accumulated and expanded in our daily life and techniques are needed to be established on how to organize and retrieve them. Though content-based image retrieval (CBIR) made great progress, current low-level visual information based retrieval technology in CBIR does not allow users to search images by high-level semantics for art image retrieval. We propose a fuzzy approach to describe and to extract the fuzzy aesthetic semantic feature of art images. Aiming to deal with the subjectivity and vagueness of human aesthetic perception, we utilize the linguistic variable to describe the image aesthetic semantics, so it becomes possible to depict images in linguistic expression such as ‘very action’. Furthermore, we apply neural network approach to model the process of human aesthetic perception and to extract the fuzzy aesthetic semantic feature vector. The art image retrieval system based on fuzzy aesthetic semantic feature makes users more naturally search desired images by linguistic expression. We report extensive empirical studies based on a 5000-image set, and experimental results demonstrate that the proposed approach achieves excellent performance in terms of retrieval accuracy

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    An information-driven framework for image mining

    Get PDF
    [Abstract]: Image mining systems that can automatically extract semantically meaningful information (knowledge) from image data are increasingly in demand. The fundamental challenge in image mining is to determine how low-level, pixel representation contained in a raw image or image sequence can be processed to identify high-level spatial objects and relationships. To meet this challenge, we propose an efficient information-driven framework for image mining. We distinguish four levels of information: the Pixel Level, the Object Level, the Semantic Concept Level, and the Pattern and Knowledge Level. High-dimensional indexing schemes and retrieval techniques are also included in the framework to support the flow of information among the levels. We believe this framework represents the first step towards capturing the different levels of information present in image data and addressing the issues and challenges of discovering useful patterns/knowledge from each level
    corecore