1,971 research outputs found

    Survey of Object Detection Methods in Camouflaged Image

    Get PDF
    Camouflage is an attempt to conceal the signature of a target object into the background image. Camouflage detection methods or Decamouflaging method is basically used to detect foreground object hidden in the background image. In this research paper authors presented survey of camouflage detection methods for different applications and areas

    Color image segmentation using a self-initializing EM algorithm

    Get PDF
    This paper presents a new method based on the Expectation-Maximization (EM) algorithm that we apply for color image segmentation. Since this algorithm partitions the data based on an initial set of mixtures, the color segmentation provided by the EM algorithm is highly dependent on the starting condition (initialization stage). Usually the initialization procedure selects the color seeds randomly and often this procedure forces the EM algorithm to converge to numerous local minima and produce inappropriate results. In this paper we propose a simple and yet effective solution to initialize the EM algorithm with relevant color seeds. The resulting self initialised EM algorithm has been included in the development of an adaptive image segmentation scheme that has been applied to a large number of color images. The experimental data indicates that the refined initialization procedure leads to improved color segmentation

    Colour Texture analysis

    Get PDF
    This chapter presents a novel and generic framework for image segmentation using a compound image descriptor that encompasses both colour and texture information in an adaptive fashion. The developed image segmentation method extracts the texture information using low-level image descriptors (such as the Local Binary Patterns (LBP)) and colour information by using colour space partitioning. The main advantage of this approach is the analysis of the textured images at a micro-level using the local distribution of the LBP values, and in the colour domain by analysing the local colour distribution obtained after colour segmentation. The use of the colour and texture information separately has proven to be inappropriate for natural images as they are generally heterogeneous with respect to colour and texture characteristics. Thus, the main problem is to use the colour and texture information in a joint descriptor that can adapt to the local properties of the image under analysis. We will review existing approaches to colour and texture analysis as well as illustrating how our approach can be successfully applied to a range of applications including the segmentation of natural images, medical imaging and product inspection

    Automating the construction of scene classifiers for content-based video retrieval

    Get PDF
    This paper introduces a real time automatic scene classifier within content-based video retrieval. In our envisioned approach end users like documentalists, not image processing experts, build classifiers interactively, by simply indicating positive examples of a scene. Classification consists of a two stage procedure. First, small image fragments called patches are classified. Second, frequency vectors of these patch classifications are fed into a second classifier for global scene classification (e.g., city, portraits, or countryside). The first stage classifiers can be seen as a set of highly specialized, learned feature detectors, as an alternative to letting an image processing expert determine features a priori. We present results for experiments on a variety of patch and image classes. The scene classifier has been used successfully within television archives and for Internet porn filtering

    Using segmented objects in ostensive video shot retrieval

    Get PDF
    This paper presents a system for video shot retrieval in which shots are retrieved based on matching video objects using a combination of colour, shape and texture. Rather than matching on individual objects, our system supports sets of query objects which in total reflect the user’s object-based information need. Our work also adapts to a shifting user information need by initiating the partitioning of a user’s search into two or more distinct search threads, which can be followed by the user in sequence. This is an automatic process which maps neatly to the ostensive model for information retrieval in that it allows a user to place a virtual checkpoint on their search, explore one thread or aspect of their information need and then return to that checkpoint to then explore an alternative thread. Our system is fully functional and operational and in this paper we illustrate several design decisions we have made in building it

    Automatic region-of-interest extraction in low depth-of-field images

    Get PDF
    PhD ThesisAutomatic extraction of focused regions from images with low depth-of-field (DOF) is a problem without an efficient solution yet. The capability of extracting focused regions can help to bridge the semantic gap by integrating image regions which are meaningfully relevant and generally do not exhibit uniform visual characteristics. There exist two main difficulties for extracting focused regions from low DOF images using high-frequency based techniques: computational complexity and performance. A novel unsupervised segmentation approach based on ensemble clustering is proposed to extract the focused regions from low DOF images in two stages. The first stage is to cluster image blocks in a joint contrast-energy feature space into three constituent groups. To achieve this, we make use of a normal mixture-based model along with standard expectation-maximization (EM) algorithm at two consecutive levels of block size. To avoid the common problem of local optima experienced in many models, an ensemble EM clustering algorithm is proposed. As a result, relevant blocks, i.e., block-based region-of-interest (ROI), closely conforming to image objects are extracted. In stage two, two different approaches have been developed to extract pixel-based ROI. In the first approach, a binary saliency map is constructed from the relevant blocks at the pixel level, which is based on difference of Gaussian (DOG) and binarization methods. Then, a set of morphological operations is employed to create the pixel-based ROI from the map. Experimental results demonstrate that the proposed approach achieves an average segmentation performance of 91.3% and is computationally 3 times faster than the best existing approach. In the second approach, a minimal graph cut is constructed by using the max-flow method and also by using object/background seeds provided by the ensemble clustering algorithm. Experimental results demonstrate an average segmentation performance of 91.7% and approximately 50% reduction of the average computational time by the proposed colour based approach compared with existing unsupervised approaches
    corecore