906 research outputs found

    Total variation regularization for manifold-valued data

    Full text link
    We consider total variation minimization for manifold valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with â„“p\ell^p-type data terms in the manifold case. These algorithms are based on iterative geodesic averaging which makes them easily applicable to a large class of data manifolds. As an application, we consider denoising images which take their values in a manifold. We apply our algorithms to diffusion tensor images, interferometric SAR images as well as sphere and cylinder valued images. For the class of Cartan-Hadamard manifolds (which includes the data space in diffusion tensor imaging) we show the convergence of the proposed TV minimizing algorithms to a global minimizer

    Sparse Coding on Symmetric Positive Definite Manifolds using Bregman Divergences

    Full text link
    This paper introduces sparse coding and dictionary learning for Symmetric Positive Definite (SPD) matrices, which are often used in machine learning, computer vision and related areas. Unlike traditional sparse coding schemes that work in vector spaces, in this paper we discuss how SPD matrices can be described by sparse combination of dictionary atoms, where the atoms are also SPD matrices. We propose to seek sparse coding by embedding the space of SPD matrices into Hilbert spaces through two types of Bregman matrix divergences. This not only leads to an efficient way of performing sparse coding, but also an online and iterative scheme for dictionary learning. We apply the proposed methods to several computer vision tasks where images are represented by region covariance matrices. Our proposed algorithms outperform state-of-the-art methods on a wide range of classification tasks, including face recognition, action recognition, material classification and texture categorization

    The Manifold of Neural Responses Informs Physiological Circuits in the Visual System

    Get PDF
    The rapid development of multi-electrode and imaging techniques is leading to a data explosion in neuroscience, opening the possibility of truly understanding the organization and functionality of our visual systems. Furthermore, the need for more natural visual stimuli greatly increases the complexity of the data. Together, these create a challenge for machine learning. Our goal in this thesis is to develop one such technique. The central pillar of our contribution is designing a manifold of neurons, and providing an algorithmic approach to inferring it. This manifold is functional, in the sense that nearby neurons on the manifold respond similarly (in time) to similar aspects of the stimulus ensemble. By organizing the neurons, our manifold differs from other, standard manifolds as they are used in visual neuroscience which instead organize the stimuli. Our contributions to the machine learning component of the thesis are twofold. First, we develop a tensor representation of the data, adopting a multilinear view of potential circuitry. Tensor factorization then provides an intermediate representation between the neural data and the manifold. We found that the rank of the neural factor matrix can be used to select an appropriate number of tensor factors. Second, to apply manifold learning techniques, a similarity kernel on the data must be defined. Like many others, we employ a Gaussian kernel, but refine it based on a proposed graph sparsification technique—this makes the resulting manifolds less sensitive to the choice of bandwidth parameter. We apply this method to neuroscience data recorded from retina and primary visual cortex in the mouse. For the algorithm to work, however, the underlying circuitry must be exercised to as full an extent as possible. To this end, we develop an ensemble of flow stimuli, which simulate what the mouse would \u27see\u27 running through a field. Applying the algorithm to the retina reveals that neurons form clusters corresponding to known retinal ganglion cell types. In the cortex, a continuous manifold is found, indicating that, from a functional circuit point of view, there may be a continuum of cortical function types. Interestingly, both manifolds share similar global coordinates, which hint at what the key ingredients to vision might be. Lastly, we turn to perhaps the most widely used model for the cortex: deep convolutional networks. Their feedforward architecture leads to manifolds that are even more clustered than the retina, and not at all like that of the cortex. This suggests, perhaps, that they may not suffice as general models for Artificial Intelligence

    Mapping Topographic Structure in White Matter Pathways with Level Set Trees

    Full text link
    Fiber tractography on diffusion imaging data offers rich potential for describing white matter pathways in the human brain, but characterizing the spatial organization in these large and complex data sets remains a challenge. We show that level set trees---which provide a concise representation of the hierarchical mode structure of probability density functions---offer a statistically-principled framework for visualizing and analyzing topography in fiber streamlines. Using diffusion spectrum imaging data collected on neurologically healthy controls (N=30), we mapped white matter pathways from the cortex into the striatum using a deterministic tractography algorithm that estimates fiber bundles as dimensionless streamlines. Level set trees were used for interactive exploration of patterns in the endpoint distributions of the mapped fiber tracks and an efficient segmentation of the tracks that has empirical accuracy comparable to standard nonparametric clustering methods. We show that level set trees can also be generalized to model pseudo-density functions in order to analyze a broader array of data types, including entire fiber streamlines. Finally, resampling methods show the reliability of the level set tree as a descriptive measure of topographic structure, illustrating its potential as a statistical descriptor in brain imaging analysis. These results highlight the broad applicability of level set trees for visualizing and analyzing high-dimensional data like fiber tractography output
    • …
    corecore