30,001 research outputs found

    Systematic approach to nonlinear filtering associated with aggregation operators. Part 2. Frechet MIMO-filters

    Get PDF
    Median filtering has been widely used in scalar-valued image processing as an edge preserving operation. The basic idea is that the pixel value is replaced by the median of the pixels contained in a window around it. In this work, this idea is extended onto vector-valued images. It is based on the fact that the median is also the value that minimizes the sum of distances between all grey-level pixels in the window. The Frechet median of a discrete set of vector-valued pixels in a metric space with a metric is the point minimizing the sum of metric distances to the all sample pixels. In this paper, we extend the notion of the Frechet median to the general Frechet median, which minimizes the Frechet cost function (FCF) in the form of aggregation function of metric distances, instead of the ordinary sum. Moreover, we propose use an aggregation distance instead of classical metric distance. We use generalized Frechet median for constructing new nonlinear Frechet MIMO-filters for multispectral image processing. (C) 2017 The Authors. Published by Elsevier Ltd.This work was supported by grants the RFBR No 17-07-00886, No 17-29-03369 and by Ural State Forest University Engineering's Center of Excellence in "Quantum and Classical Information Technologies for Remote Sensing Systems"

    Generalized Kernel-based Visual Tracking

    Full text link
    In this work we generalize the plain MS trackers and attempt to overcome standard mean shift trackers' two limitations. It is well known that modeling and maintaining a representation of a target object is an important component of a successful visual tracker. However, little work has been done on building a robust template model for kernel-based MS tracking. In contrast to building a template from a single frame, we train a robust object representation model from a large amount of data. Tracking is viewed as a binary classification problem, and a discriminative classification rule is learned to distinguish between the object and background. We adopt a support vector machine (SVM) for training. The tracker is then implemented by maximizing the classification score. An iterative optimization scheme very similar to MS is derived for this purpose.Comment: 12 page

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Cross-Scale Cost Aggregation for Stereo Matching

    Full text link
    Human beings process stereoscopic correspondence across multiple scales. However, this bio-inspiration is ignored by state-of-the-art cost aggregation methods for dense stereo correspondence. In this paper, a generic cross-scale cost aggregation framework is proposed to allow multi-scale interaction in cost aggregation. We firstly reformulate cost aggregation from a unified optimization perspective and show that different cost aggregation methods essentially differ in the choices of similarity kernels. Then, an inter-scale regularizer is introduced into optimization and solving this new optimization problem leads to the proposed framework. Since the regularization term is independent of the similarity kernel, various cost aggregation methods can be integrated into the proposed general framework. We show that the cross-scale framework is important as it effectively and efficiently expands state-of-the-art cost aggregation methods and leads to significant improvements, when evaluated on Middlebury, KITTI and New Tsukuba datasets.Comment: To Appear in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2014 (poster, 29.88%
    corecore