169 research outputs found

    Retinex theory for color image enhancement: A systematic review

    Get PDF
    A short but comprehensive review of Retinex has been presented in this paper. Retinex theory aims to explain human color perception. In addition, its derivation on modifying the reflectance components has introduced effective approaches for images contrast enhancement. In this review, the classical theory of Retinex has been covered. Moreover, advance and improved techniques of Retinex, proposed in the literature, have been addressed. Strength and weakness aspects of each technique are discussed and compared. An optimum parameter is needed to be determined to define the image degradation level. Such parameter determination would help in quantifying the amount of adjustment in the Retinex theory. Thus, a robust framework to modify the reflectance component of the Retinex theory can be developed to enhance the overall quality of color images

    Physical-based optimization for non-physical image dehazing methods

    Get PDF
    Images captured under hazy conditions (e.g. fog, air pollution) usually present faded colors and loss of contrast. To improve their visibility, a process called image dehazing can be applied. Some of the most successful image dehazing algorithms are based on image processing methods but do not follow any physical image formation model, which limits their performance. In this paper, we propose a post-processing technique to alleviate this handicap by enforcing the original method to be consistent with a popular physical model for image formation under haze. Our results improve upon those of the original methods qualitatively and according to several metrics, and they have also been validated via psychophysical experiments. These results are particularly striking in terms of avoiding over-saturation and reducing color artifacts, which are the most common shortcomings faced by image dehazing methods

    Perceiving Unknown in Dark from Perspective of Cell Vibration

    Full text link
    Low light very likely leads to the degradation of image quality and even causes visual tasks' failure. Existing image enhancement technologies are prone to over-enhancement or color distortion, and their adaptability is fairly limited. In order to deal with these problems, we utilise the mechanism of biological cell vibration to interpret the formation of color images. In particular, we here propose a simple yet effective cell vibration energy (CVE) mapping method for image enhancement. Based on a hypothetical color-formation mechanism, our proposed method first uses cell vibration and photoreceptor correction to determine the photon flow energy for each color channel, and then reconstructs the color image with the maximum energy constraint of the visual system. Photoreceptor cells can adaptively adjust the feedback from the light intensity of the perceived environment. Based on this understanding, we here propose a new Gamma auto-adjustment method to modify Gamma values according to individual images. Finally, a fusion method, combining CVE and Gamma auto-adjustment (CVE-G), is proposed to reconstruct the color image under the constraint of lightness. Experimental results show that the proposed algorithm is superior to six state of the art methods in avoiding over-enhancement and color distortion, restoring the textures of dark areas and reproducing natural colors. The source code will be released at https://github.com/leixiaozhou/CVE-G-Resource-Base.Comment: 13 pages, 17 figure
    corecore