8,619 research outputs found

    A multi-view approach to cDNA micro-array analysis

    Get PDF
    The official published version can be obtained from the link below.Microarray has emerged as a powerful technology that enables biologists to study thousands of genes simultaneously, therefore, to obtain a better understanding of the gene interaction and regulation mechanisms. This paper is concerned with improving the processes involved in the analysis of microarray image data. The main focus is to clarify an image's feature space in an unsupervised manner. In this paper, the Image Transformation Engine (ITE), combined with different filters, is investigated. The proposed methods are applied to a set of real-world cDNA images. The MatCNN toolbox is used during the segmentation process. Quantitative comparisons between different filters are carried out. It is shown that the CLD filter is the best one to be applied with the ITE.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Science Foundation of China under Innovative Grant 70621001, Chinese Academy of Sciences under Innovative Group Overseas Partnership Grant, the BHP Billiton Cooperation of Australia Grant, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050 and the Alexander von Humboldt Foundation of Germany

    Study of time-lapse processing for dynamic hydrologic conditions

    Get PDF
    The usefulness of dynamic display techniques in exploiting the repetitive nature of ERTS imagery was investigated. A specially designed Electronic Satellite Image Analysis Console (ESIAC) was developed and employed to process data for seven ERTS principal investigators studying dynamic hydrological conditions for diverse applications. These applications include measurement of snowfield extent and sediment plumes from estuary discharge, Playa Lake inventory, and monitoring of phreatophyte and other vegetation changes. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The most unique feature of the system is the capability to time lapse the imagery and analytic displays of the imagery. Data products included quantitative measurements of distances and areas, binary thematic maps based on monospectral or multispectral decisions, radiance profiles, and movie loops. Applications of animation for uses other than creating time-lapse sequences are identified. Input to the ESIAC can be either digital or via photographic transparencies

    Burst Denoising with Kernel Prediction Networks

    Full text link
    We present a technique for jointly denoising bursts of images taken from a handheld camera. In particular, we propose a convolutional neural network architecture for predicting spatially varying kernels that can both align and denoise frames, a synthetic data generation approach based on a realistic noise formation model, and an optimization guided by an annealed loss function to avoid undesirable local minima. Our model matches or outperforms the state-of-the-art across a wide range of noise levels on both real and synthetic data.Comment: To appear in CVPR 2018 (spotlight). Project page: http://people.eecs.berkeley.edu/~bmild/kpn

    Illustrative interactive stipple rendering

    Get PDF
    Journal ArticleAbstract-Simulating hand-drawn illustration can succinctly express information in a manner that is communicative and informative. We present a framework for an interactive direct stipple rendering of volume and surface-based objects. By combining the principles of artistic and scientific illustration, we explore several feature enhancement techniques to create effective, interactive visualizations of scientific and medical data sets. We also introduce a rendering mechanism that generates appropriate point lists at all resolutions during an automatic preprocess and modifies rendering styles through different combinations of these feature enhancements. The new system is an effective way to interactively preview large, complex volume and surface data sets in a concise, meaningful, and illustrative manner. Stippling is effective for many applications and provides a quick and efficient method to investigate both volume and surface models

    CCD imaging instruments for planetary spacecraft applications

    Get PDF
    The development of new spacecraft camera systems to be used in conjunction with CCD sensors is reported. A brief overview of the science objectives and engineering constraints which influence the design of cameras for deep space is followed by a review of two current development programs, one leading to a line scan imager and the other to an area array frame camera. For each of these, a general description of the imager is given. It is evident that currently available CCDs fall short of requirements in some respects

    Application of LANDSAT images to wetland study and land use classification in west Tennessee, part 1

    Get PDF
    The author has identified the following significant results. densitometric analysis was performed on LANDSAT data to permit numerical classification of objects observed in the imagery on the basis of measurements of optical density. Relative light transmission measurements were taken on four types of scene elements in each of three LANDSAT black and white bands in order to determine which classification could be distinguished. The analysis of band 6 determined forest and agricultural classifications, but not the urban and wetlands. Both bands 4 and 5 showed a significant difference existed between the confirmed classification of wetlands-agriculture, and urban areas. Therefore, the combination of band 6 with either 4 or 5 would permit the separation of the urban from the wetland classification. To enhance the urban and wetland boundaries, the LANDSAT black and white bands were combined in a multispectral additive color viewer. Several combinations of filters and light intensities were used to obtain maximum discrimination between points of interest. The best results for enhancing wetland boundaries and urban areas were achieved by using a color composite (a blue, green, and red filter on bands 4, 5 and 6 respectively)

    Remote sensing of coastal wetland vegetation and estuarine water properties

    Get PDF
    There are no author-identified significant results in this report

    MEMS-enabled silicon photonic integrated devices and circuits

    Get PDF
    Photonic integrated circuits have seen a dramatic increase in complexity over the past decades. This development has been spurred by recent applications in datacenter communications and enabled by the availability of standardized mature technology platforms. Mechanical movement of wave-guiding structures at the micro- and nanoscale provides unique opportunities to further enhance functionality and to reduce power consumption in photonic integrated circuits. We here demonstrate integration of MEMS-enabled components in a simplified silicon photonics process based on IMEC's Standard iSiPP50G Silicon Photonics Platform and a custom release process

    Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability

    Full text link
    Electrochromic technology has been actively researched for displays, adjustable mirrors, smart windows, and other cutting-edge applications. However, it has never been proposed to overcome the critical problems in the field of surface-enhanced Raman scattering (SERS). Herein, we demonstrate a generic electrochromic strategy for ensuring the reproducibility and renewability of SERS substrates, which are both scientifically and technically important due to the great need for quantitative analysis, standardized production and low cost in SERS. This color-changing strategy is based on a unique quantitative relationship between the SERS signal amplification and the coloration degree within a certain range, in which the SERS activity of the substrate can be effectively inferred by judging the degree of color change. Our results may provide a first step toward the rational design of electrochromic SERS substrates with a high sensitivity, reproducibility, and renewability
    • …
    corecore