158 research outputs found

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Enhancing chaos in multistability regions of Duffing map for an asymmetric image encryption algorithm

    Full text link
    We investigate the dynamics of a two-dimensional chaotic Duffing map which exhibits the occurrence of coexisting chaotic attractors as well as periodic orbits with a typical set of system parameters. Such unusual behaviors in low-dimensional maps is inadmissible especially in the applications of chaos based cryptography. To this end, the Sine-Cosine chaotification technique is used to propose a modified Duffing map in enhancing its chaos complexity in the multistable regions. Based on the enhanced Duffing map, a new asymmetric image encryption algorithm is developed with the principles of confusion and diffusion. While in the former, hyperchaotic sequences are generated for scrambling of plain-image pixels, the latter is accomplished by the elliptic curves, S-box and hyperchaotic sequences. Simulation results and security analysis reveal that the proposed encryption algorithm can effectively encrypt and decrypt various kinds of digital images with a high-level security.Comment: 15 pages, 15 figure

    A proposed lightweight image encryption using ChaCha with hyperchaotic maps

    Get PDF
    Image encryption plays a pivotal rule in enhancing telecommunications media. Since Privacy is necessary in our daily life in many areas, the personal image will be encrypted when it sent it over the Internet to the recipient to maintain privacy issue. In this paper, the image is encrypted using ChaCha symmetric stream cipher with Hyperchaotic Map. Due to the sensitivity characteristics of initial conditions, pseudo randomness chaotic maps and control parameters in chaotic, Hyperchaotic maps is use, higher security is obtained via using initial seed number, variance of parameters, and unpredictable direction of chaotic. The suggested lightweight image encryption has confirmed robustness contra brute force attacks by providing a massive key space. Furthermore, the suggested lightweight image encryption is eligible to defense from statistical cracking, insecurity of image based on criteria's histogram correlation and entropy

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future

    Four dimensional hyperchaotic communication system based on dynamic feedback synchronization technique for image encryption systems

    Get PDF
    This paper presents the design and simulation of a hyperchaotic communication system based on four dimensions (4D) Lorenz generator. The synchronization technique that used between the master/transmitter and the slave/receiver is based on dynamic feedback modulation technique (DFM). The mismatch error between the master dynamics and slave dynamics are calculated continuously to maintain the sync process. The information signal (binary image) is masked (encrypted) by the hyperchaotic sample x of Lorenz generator. The design and simulation of the overall system are carried out using MATLAB Simulink software. The simulation results prove that the system is suitable for securing the plain-data, in particular the image data with a size of 128Ă—128 pixels within 0.1 second required for encryption, and decryption in the presence of the channel noise. The decryption results for gray and colored images show that the system can accurately decipher the ciphered image, but with low level distortion in the image pixels due to the channel noise. These results make the proposed cryptosystem suitable for real time secure communications

    A novel conservative chaos driven dynamic DNA coding for image encryption

    Full text link
    In this paper, we propose a novel conservative chaotic standard map-driven dynamic DNA coding (encoding, addition, subtraction and decoding) for the image encryption. The proposed image encryption algorithm is a dynamic DNA coding algorithm i.e., for the encryption of each pixel different rules for encoding, addition/subtraction, decoding etc. are randomly selected based on the pseudorandom sequences generated with the help of the conservative chaotic standard map. We propose a novel way to generate pseudo-random sequences through the conservative chaotic standard map and also test them rigorously through the most stringent test suite of pseudo-randomness, the NIST test suite, before using them in the proposed image encryption algorithm. Our image encryption algorithm incorporates a unique feed-forward and feedback mechanisms to generate and modify the dynamic one-time pixels that are further used for the encryption of each pixel of the plain image, therefore, bringing in the desired sensitivity on plaintext as well as ciphertext. All the controlling pseudorandom sequences used in the algorithm are generated for a different value of the parameter (part of the secret key) with inter-dependency through the iterates of the chaotic map (in the generation process) and therefore possess extreme key sensitivity too. The performance and security analysis has been executed extensively through histogram analysis, correlation analysis, information entropy analysis, DNA sequence-based analysis, perceptual quality analysis, key sensitivity analysis, plaintext sensitivity analysis, etc., The results are promising and prove the robustness of the algorithm against various common cryptanalytic attacks.Comment: 29 pages, 5 figures, 15 table

    A new four-dimensional hyper-chaotic system for image encryption

    Get PDF
    Currently, images are very important with the rapid growth of communication networks. Therefore, image encryption is a process to provide security for private information and prevent unwanted access to sensitive data by unauthorized individuals. Chaos systems provide an important role for key generation, with high randomization properties and accurate performance. In this study, a new four-dimensional hyper-chaotic system has been suggested that is used in the keys generation, which are utilized in the image encryption process to achieve permutation and substitution operations. Firstly, color bands are permuted using the index of the chaotic sequences to remove the high correlation among neighboring pixels. Secondly, dynamic S-boxes achieve the principle of substitution, which are utilized to diffuse the pixel values of the color image. The efficiency of the proposed method is tested by the key space, histogram, and so on. Security analysis shows that the proposed method for encrypting images is secure and resistant to different attacks. It contains a big key space of (2627) and a high sensitivity to a slight change in the secret key, a fairly uniform histogram, and entropy values nearby to the best value of 8. Moreover, it consumes a very short time for encryption and decryption
    • …
    corecore