1,331 research outputs found

    Image Retrieval Using Gradient Operators

    Get PDF
    The images are described by its content like color, texture, and shape information present in them.In this paper novel image retrieval methods discussed based on shape features extracted using gradient operators like Robert, Sobel, Prewitt and Canny. Masking of Gradient operators takes place for continuing the discontinue edges. Morphological operations like erosion and dilation are used along with canny. The proposed image retrieval techniques are tested on generic image database images spread across different categories. Gradient operators features are extracted using Figure of Merit (FOM). The average precision and recall of all queries are computed and considered for performance analysis. The performance ranking of the masks for proposed image retrieval methods can be listed as Robert, Canny, Prewitt, and Sobel

    Novel Color Image Compression Algorithm Based-On Quadtree

    Get PDF
    This paper presents a novel algorithm having two image processing systems that have the ability to compress the colour image. The proposed systems divides the colour image into RGB components, each component is selected to be divided. The division processes of the component into blocks are based on quad tree method. For each selection, the other two components are divided using the same blocks coordinates of the selected divided component. In the first system, every block has three minimum values and three difference values. While the other system, every block has three minimum values and one average difference. From experiments, it is found that the division according to the G component is the best giving good visual quality of the compressed images with appropriate compression ratios. It is also noticed, the performance of the second system is better than the first one. The obtained compression ratios ofthe second system are between 1.3379 and 5.0495 at threshold value 0.1, and between 2.3476 and 8.9713 at threshold value 0.2

    Variable size block truncation coding with adaptive bit plane omission for image compression

    Get PDF
    A modified version of the Block Truncation Coding (BTC), which is a non-information preserving image compression technique, is studied. The first modification is the introduction of variable block sizes to the standard BTC technique. The second modification is the adaptive omission of bit planes. Threshold selections for this modified BTC technique are analyzed in the context of the human visual system. Modified BTC techniques are compared against the standard technique from the point of view of visual image quality and compresion efficiency

    Investigating Polynomial Fitting Schemes for Image Compression

    Get PDF
    Image compression is a means to perform transmission or storage of visual data in the most economical way. Though many algorithms have been reported, research is still needed to cope with the continuous demand for more efficient transmission or storage. This research work explores and implements polynomial fitting techniques as means to perform block-based lossy image compression. In an attempt to investigate nonpolynomial models, a region-based scheme is implemented to fit the whole image using bell-shaped functions. The idea is simply to view an image as a 3D geographical map consisting of hills and valleys. However, the scheme suffers from high computational demands and inferiority to many available image compression schemes. Hence, only polynomial models get further considerations. A first order polynomial (plane) model is designed to work in a multiplication- and division-free (MDF) environment. The intensity values of each image block are fitted to a plane and the parameters are then quantized and coded. Blocking artefacts, a common drawback of block-based image compression techniques, are reduced using an MDF line-fitting scheme at blocks’ boundaries. It is shown that a compression ratio of 62:1 at 28.8dB is attainable for the standard image PEPPER, outperforming JPEG, both objectively and subjectively for this part of the rate-distortion characteristics. Inter-block prediction can substantially improve the compression performance of the plane model to reach a compression ratio of 112:1 at 27.9dB. This improvement, however, slightly increases computational complexity and reduces pipelining capability. Although JPEG2000 is not a block-based scheme, it is encouraging that the proposed prediction scheme performs better in comparison to JPEG 2000, computationally and qualitatively. However, more experiments are needed to have a more concrete comparison. To reduce blocking artefacts, a new postprocessing scheme, based on Weber’s law, is employed. It is reported that images postprocessed using this scheme are subjectively more pleasing with a marginal increase in PSNR (<0.3 dB). The Weber’s law is modified to perform edge detection and quality assessment tasks. These results motivate the exploration of higher order polynomials, using three parameters to maintain comparable compression performance. To investigate the impact of higher order polynomials, through an approximate asymptotic behaviour, a novel linear mapping scheme is designed. Though computationally demanding, the performances of higher order polynomial approximation schemes are comparable to that of the plane model. This clearly demonstrates the powerful approximation capability of the plane model. As such, the proposed linear mapping scheme constitutes a new approach in image modeling, and hence worth future consideration

    Video Quality Assessment

    Get PDF
    • …
    corecore