664 research outputs found

    Computationally efficient locally adaptive demosaicing of color filter array images using the dual-tree complex wavelet packet transform

    Get PDF
    Most digital cameras use an array of alternating color filters to capture the varied colors in a scene with a single sensor chip. Reconstruction of a full color image from such a color mosaic is what constitutes demosaicing. In this paper, a technique is proposed that performs this demosaicing in a way that incurs a very low computational cost. This is done through a (dual-tree complex) wavelet interpretation of the demosaicing problem. By using a novel locally adaptive approach for demosaicing (complex) wavelet coefficients, we show that many of the common demosaicing artifacts can be avoided in an efficient way. Results demonstrate that the proposed method is competitive with respect to the current state of the art, but incurs a lower computational cost. The wavelet approach also allows for computationally effective denoising or deblurring approaches

    A new ghost cell/level set method for moving boundary problems:application to tumor growth

    Get PDF
    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth

    Video enhancement : content classification and model selection

    Get PDF
    The purpose of video enhancement is to improve the subjective picture quality. The field of video enhancement includes a broad category of research topics, such as removing noise in the video, highlighting some specified features and improving the appearance or visibility of the video content. The common difficulty in this field is how to make images or videos more beautiful, or subjectively better. Traditional approaches involve lots of iterations between subjective assessment experiments and redesigns of algorithm improvements, which are very time consuming. Researchers have attempted to design a video quality metric to replace the subjective assessment, but so far it is not successful. As a way to avoid heuristics in the enhancement algorithm design, least mean square methods have received considerable attention. They can optimize filter coefficients automatically by minimizing the difference between processed videos and desired versions through a training. However, these methods are only optimal on average but not locally. To solve the problem, one can apply the least mean square optimization for individual categories that are classified by local image content. The most interesting example is Kondo’s concept of local content adaptivity for image interpolation, which we found could be generalized into an ideal framework for content adaptive video processing. We identify two parts in the concept, content classification and adaptive processing. By exploring new classifiers for the content classification and new models for the adaptive processing, we have generalized a framework for more enhancement applications. For the part of content classification, new classifiers have been proposed to classify different image degradations such as coding artifacts and focal blur. For the coding artifact, a novel classifier has been proposed based on the combination of local structure and contrast, which does not require coding block grid detection. For the focal blur, we have proposed a novel local blur estimation method based on edges, which does not require edge orientation detection and shows more robust blur estimation. With these classifiers, the proposed framework has been extended to coding artifact robust enhancement and blur dependant enhancement. With the content adaptivity to more image features, the number of content classes can increase significantly. We show that it is possible to reduce the number of classes without sacrificing much performance. For the part of model selection, we have introduced several nonlinear filters to the proposed framework. We have also proposed a new type of nonlinear filter, trained bilateral filter, which combines both advantages of the original bilateral filter and the least mean square optimization. With these nonlinear filters, the proposed framework show better performance than with linear filters. Furthermore, we have shown a proof-of-concept for a trained approach to obtain contrast enhancement by a supervised learning. The transfer curves are optimized based on the classification of global or local image content. It showed that it is possible to obtain the desired effect by learning from other computationally expensive enhancement algorithms or expert-tuned examples through the trained approach. Looking back, the thesis reveals a single versatile framework for video enhancement applications. It widens the application scope by including new content classifiers and new processing models and offers scalabilities with solutions to reduce the number of classes, which can greatly accelerate the algorithm design

    Joint deconvolution and demosaicing

    Get PDF
    International audienceWe present a new method to jointly perform deblurring and color- demosaicing of RGB images. Our method is derived following an inverse problem approach in a MAP framework. To avoid noise am- plification and allow for interpolation of missing data, we make use of edge-preserving spatial regularization and spectral regularization. We demonstrate the improvements brought by our algorithm by processing both simulated and real RGB images obtained with a Bayer's color filter and with different types of blurring

    MIDAS prototype Multispectral Interactive Digital Analysis System for large area earth resources surveys. Volume 2: Charge coupled device investigation

    Get PDF
    MIDAS is a third-generation, fast, low cost, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from large regions with present and projected sensors. MIDAS, for example, can process a complete ERTS frame in forty seconds and provide a color map of sixteen constituent categories in a few minutes. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The need for advanced onboard spacecraft processing of remotely sensed data is stated and approaches to this problem are described which are feasible through the use of charge coupled devices. Tentative mechanizations for the required processing operations are given in large block form. These initial designs can serve as a guide to circuit/system designers

    Locally adaptive complex wavelet-based demosaicing for color filter array images

    Get PDF
    A new approach for wavelet-based demosaicing of color filter array (CFA) images is presented. It is observed that conventional wavelet-based demosaicing results in demosaicing artifacts in high spatial frequency regions of the image. By proposing a framework of locally adaptive demosaicing in the wavelet domain, the presented method proposes computationally simple techniques to avoid these artifacts. In order to reduce computation time and memory requirements even more, we propose the use of the dual tree complex wavelet transform. The results show that wavelet-based demosaicing, using the proposed locally adaptive framework, is visually comparable with state-of-the-art pixel based demosaicing. This result is very promising when considering a low complexity wavelet-based demosaicing and denoising approach

    Topographic map visualization from adaptively compressed textures

    Get PDF
    Raster-based topographic maps are commonly used in geoinformation systems to overlay geographic entities on top of digital terrain models. Using compressed texture formats for encoding topographic maps allows reducing latency times while visualizing large geographic datasets. Topographic maps encompass high-frequency content with large uniform regions, making current compressed texture formats inappropriate for encoding them. In this paper we present a method for locally-adaptive compression of topographic maps. Key elements include a Hilbert scan to maximize spatial coherence, efficient encoding of homogeneous image regions through arbitrarily-sized texel runs, a cumulative run-length encoding supporting fast random-access, and a compression algorithm supporting lossless and lossy compression. Our scheme can be easily implemented on current programmable graphics hardware allowing real-time GPU decompression and rendering of bilinear-filtered topographic maps.Postprint (published version
    • …
    corecore