11,360 research outputs found

    Color Constancy Convolutional Autoencoder

    Full text link
    In this paper, we study the importance of pre-training for the generalization capability in the color constancy problem. We propose two novel approaches based on convolutional autoencoders: an unsupervised pre-training algorithm using a fine-tuned encoder and a semi-supervised pre-training algorithm using a novel composite-loss function. This enables us to solve the data scarcity problem and achieve competitive, to the state-of-the-art, results while requiring much fewer parameters on ColorChecker RECommended dataset. We further study the over-fitting phenomenon on the recently introduced version of INTEL-TUT Dataset for Camera Invariant Color Constancy Research, which has both field and non-field scenes acquired by three different camera models.Comment: 6 pages, 1 figure, 3 table

    Colour Constancy: Biologically-inspired Contrast Variant Pooling Mechanism

    Get PDF
    Pooling is a ubiquitous operation in image processing algorithms that allows for higher-level processes to collect relevant low-level features from a region of interest. Currently, max-pooling is one of the most commonly used operators in the computational literature. However, it can lack robustness to outliers due to the fact that it relies merely on the peak of a function. Pooling mechanisms are also present in the primate visual cortex where neurons of higher cortical areas pool signals from lower ones. The receptive fields of these neurons have been shown to vary according to the contrast by aggregating signals over a larger region in the presence of low contrast stimuli. We hypothesise that this contrast-variant-pooling mechanism can address some of the shortcomings of max-pooling. We modelled this contrast variation through a histogram clipping in which the percentage of pooled signal is inversely proportional to the local contrast of an image. We tested our hypothesis by applying it to the phenomenon of colour constancy where a number of popular algorithms utilise a max-pooling step (e.g. White-Patch, Grey-Edge and Double-Opponency). For each of these methods, we investigated the consequences of replacing their original max-pooling by the proposed contrast-variant-pooling. Our experiments on three colour constancy benchmark datasets suggest that previous results can significantly improve by adopting a contrast-variant-pooling mechanism

    A Contrast/Filling-In Model of 3-D Lightness Perception

    Full text link
    Wallach's ratio hypothesis states that local luminance ratios clr!termine lightness perception under variable illumination. While local luminance ratios successfully discount gradual variations in illumination (illumination constancy or Type I constancy), they fail to explain lightness constancy in general. Some examples of failures of the ratio hypothesis include effects suggesting the coplanar ratio hypothesis (Gilchrist 1977), "assimilation" effects, and configural effects such as the Benary cross, and White's illusion. The present article extends the Boundary Contour System/Feature Contour System (BCS/FCS) approach to provide an explanation of these effects in terms of a neural model of 3-D lightness perception. Lightness constancy of objects in front of different backgrounds (background constancy or Type II constancy) is used to provide functional constraints to the theory and suggest a contrast negation hypothesis which states that ratio measures between coplanar regions are given more weight in the determination of lightness. Simulations of the model applied to several stimuli including Benary cross and White's illusion show that contrast negation mechanisms modulate illumination constancy mechanisms to extend the explanatory power of the model. The model is also used to devise new stimuli that test theoretical predictions

    Color Constancy Using CNNs

    Full text link
    In this work we describe a Convolutional Neural Network (CNN) to accurately predict the scene illumination. Taking image patches as input, the CNN works in the spatial domain without using hand-crafted features that are employed by most previous methods. The network consists of one convolutional layer with max pooling, one fully connected layer and three output nodes. Within the network structure, feature learning and regression are integrated into one optimization process, which leads to a more effective model for estimating scene illumination. This approach achieves state-of-the-art performance on a standard dataset of RAW images. Preliminary experiments on images with spatially varying illumination demonstrate the stability of the local illuminant estimation ability of our CNN.Comment: Accepted at DeepVision: Deep Learning in Computer Vision 2015 (CVPR 2015 workshop

    Spectral image analysis for measuring ripeness of tomatoes

    Get PDF
    In this study, spectral images of five ripeness stages of tomatoes have been recorded and analyzed. The electromagnetic spectrum between 396 and 736 nm was recorded in 257 bands (every 1.3 nm). Results show that spectral images offer more discriminating power than standard RGB images for measuring ripeness stages of tomatoes. The classification error of individual pixels was reduced from 51% to 19%. Using a gray reference, the reflectance can be made invariant to the light source and even object geometry, which makes it possible to have comparable classification results over a large range of illumination conditions. Experimental results show that, although the error rate increases from 19% to 35% when using different light sources, it is still considerably below the 51% for RGB under a single light sourc
    • …
    corecore