43,277 research outputs found

    Content-based Image Retrieval using Color and Geometry

    Get PDF
    The increased need of content based image retrieval technique can be found in a number of different domains such as Data Mining, Education, Medical Imaging, Crime Prevention, Weather forecasting, Remote Sensing and Management of Earth Resources. With the development of Multimedia data types and heavy increase in available bandwidth, there’s a huge demand of Image Retrieval system Content based image retrieval system uses color and geometry means to store, retrieve, sort and print any combinations of the images. The retrieval of images is, for the majority of search engines, available for collecting data from the image, this can be an image file name, html tags and surrounding text. This left the actual image more or less ignored. CBIR uses methods that analyze the actual bits and pieces i.e. color, shape, texture and spatial layout. There have been different approaches such as feature extraction, indexing and retrieval process. One approach is to make an attempt to classify the image into a more textual described context. With the image classified, it can be retrieved using more traditional and better retrieval methods. Our system Content Based Image Retrieval which is based on color and geometry, the system exactly does feature extraction in first step by using color, texture and shape (geometry) on images which gives there features which can be used to classify the image into different groups using distance formulas. Also the system gives relevant images as well as irrelevant images. The project thus going to work on relevance feedback of user which helps to improve the overall results

    COLOR FEATURE WITH SPATIAL INFORMATION EXTRACTION METHODS FOR CBIR: A REVIEW

    Get PDF
    Inn then last two decades the Content Based Image Retrieval (CBIR) considered as one of the topic of interest for theresearchers. It depending one analysis of the image’s visual content which can be done by extracting the color, texture and shapefeatures. Therefore, feature extraction is one of the important steps in CBIR system for representing the image completely. Color featureis the most widely used and more reliable feature among the image visual features. This paper reviews different methods, namely LocalColor Histogram, Color Correlogram, Row sum and Column sum and Colors Coherences Vectors were used to extract colors featurestaking in consideration the spatial information of the image

    Investigating the Behavior of Compact Composite Descriptors in Early Fusion, Late Fusion and Distributed Image Retrieval

    Get PDF
    In Content-Based Image Retrieval (CBIR) systems, the visual content of the images is mapped into a new space named the feature space. The features that are chosen must be discriminative and sufficient for the description of the objects. The key to attaining a successful retrieval system is to choose the right features that represent the images as unique as possible. A feature is a set of characteristics of the image, such as color, texture, and shape. In addition, a feature can be enriched with information about the spatial distribution of the characteristic that it describes. Evaluation of the performance of low-level features is usually done on homogenous benchmarking databases with a limited number of images. In real-world image retrieval systems, databases have a much larger scale and may be heterogeneous. This paper investigates the behavior of Compact Composite Descriptors (CCDs) on heterogeneous databases of a larger scale. Early and late fusion techniques are tested and their performance in distributed image retrieval is calculated. This study demonstrates that, even if it is not possible to overcome the semantic gap in image retrieval by feature similarity, it is still possible to increase the retrieval effectiveness

    Spatial Color Indexing Using Rotation, Translation, and Scale Invariant Anglograms

    Full text link
    As color plays an essential role in image composition, many color indexing techniques have been studied for content-based image retrieval. This paper examines the use of a computational geometry-based spatial color indexing methodology for effective and efficient image retrieval. In this scheme, an image is evenly divided into a number of M * N non-overlapping blocks, and each individual block is abstracted as a unique feature point labeled with its spatial location and dominant colors. For each set of feature points labeled with the identical color, we construct a Delaunay triangulation and then compute the feature point histogram by discretizing and counting the angles produced by this triangulation. The concatenation of all these feature point histograms serves as the image index, the so-called color anglogram . An important contribution of this work is to encode the spatial color information using geometric triangulation, which is rotation, translation, and scale invariant. We have compared the proposed approach with two of the best performing of recent spatial color indexing schemes, Color-WISE and the color correlogram approaches, respectively, at image block and pixel levels of different granularity. Various experimental results demonstrate the efficacy of our techniques.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47302/1/11042_2004_Article_381122.pd

    CONTENT-BASED IMAGE RETRIEVAL USING ENHANCED HYBRID METHODS WITH COLOR AND TEXTURE FEATURES

    Get PDF
    Content-based image retrieval (CBIR) automatically retrieves similar images to the query image by using the visual contents (features) of the image like color, texture and shape. Effective CBIR is based on efficient feature extraction for indexing and on effective query image matching with the indexed images for retrieval. However the main issue in CBIR is that how to extract the features efficiently because the efficient features describe well the image and they are used efficiently in matching of the images to get robust retrieval. This issue is the main inspiration for this thesis to develop a hybrid CBIR with high performance in the spatial and frequency domains. We propose various approaches, in which different techniques are fused to extract the statistical color and texture features efficiently in both domains. In spatial domain, the statistical color histogram features are computed using the pixel distribution of the Laplacian filtered sharpened images based on the different quantization schemes. However color histogram does not provide the spatial information. The solution is by using the histogram refinement method in which the statistical features of the regions in histogram bins of the filtered image are extracted but it leads to high computational cost, which is reduced by dividing the image into the sub-blocks of different sizes, to extract the color and texture features. To improve further the performance, color and texture features are combined using sub-blocks due to the less computational cos

    On the use of edge orientation and distance for content-based image retrieval

    Get PDF
    [[abstract]]Recently, various features for content-based image retrieval (CBIR) have been proposed, such as texture, color, shape, and spatial features. In this paper we propose a new feature, called orientation-distance histogram for CBIR. Firstly, we transform the RGB color model of a given image to the HSI color model and detect edge points by using the H-vector information. Secondly, we evaluate the orientation-distance histogram from the edge points to form a feature vector. After normalization of feature, our proposed method can cope with most problems of variations in image. Finally, we show some results of query for real life images with the precision and recall rates to measure the performance. The experimental results show that the proposed retrieval method is efficient and effective[[notice]]補正完畢[[incitationindex]]EI[[conferencetype]]國際[[conferencedate]]20051013~20051015[[booktype]]紙本[[iscallforpapers]]Y[[conferencelocation]]Beijing, Chin

    Feature Extraction Using Fractal Codes

    Get PDF
    Fast and successful searching for an object in a multimedia database is a highly desirable functionality. Several approaches to content based retrieval for multimedia databases can be found in the literature [9,10,12,14,17]. The approach we consider is feature extraction. A feature can be seen as a way to present simple information like the texture, color and spatial information of an image, or the pitch, frequency of a sound etc. In this paper we present a method for feature extraction on texture and spatial similarity, using fractal coding techniques. Our method is based upon the observation that the coefficients describing the fractal code of an image, contain very useful information about the structural content of the image. We apply simple statistics on information produced by fractal image coding. The statistics reveal features and require a small amount of storage. Several invariances are a consequence of the used methods: size, global contrast, orientation

    Color image quality measures and retrieval

    Get PDF
    The focus of this dissertation is mainly on color image, especially on the images with lossy compression. Issues related to color quantization, color correction, color image retrieval and color image quality evaluation are addressed. A no-reference color image quality index is proposed. A novel color correction method applied to low bit-rate JPEG image is developed. A novel method for content-based image retrieval based upon combined feature vectors of shape, texture, and color similarities has been suggested. In addition, an image specific color reduction method has been introduced, which allows a 24-bit JPEG image to be shown in the 8-bit color monitor with 256-color display. The reduction in download and decode time mainly comes from the smart encoder incorporating with the proposed color reduction method after color space conversion stage. To summarize, the methods that have been developed can be divided into two categories: one is visual representation, and the other is image quality measure. Three algorithms are designed for visual representation: (1) An image-based visual representation for color correction on low bit-rate JPEG images. Previous studies on color correction are mainly on color image calibration among devices. Little attention was paid to the compressed image whose color distortion is evident in low bit-rate JPEG images. In this dissertation, a lookup table algorithm is designed based on the loss of PSNR in different compression ratio. (2) A feature-based representation for content-based image retrieval. It is a concatenated vector of color, shape, and texture features from region of interest (ROI). (3) An image-specific 256 colors (8 bits) reproduction for color reduction from 16 millions colors (24 bits). By inserting the proposed color reduction method into a JPEG encoder, the image size could be further reduced and the transmission time is also reduced. This smart encoder enables its decoder using less time in decoding. Three algorithms are designed for image quality measure (IQM): (1) A referenced IQM based upon image representation in very low-dimension. Previous studies on IQMs are based on high-dimensional domain including spatial and frequency domains. In this dissertation, a low-dimensional domain IQM based on random projection is designed, with preservation of the IQM accuracy in high-dimensional domain. (2) A no-reference image blurring metric. Based on the edge gradient, the degree of image blur can be measured. (3) A no-reference color IQM based upon colorfulness, contrast and sharpness

    Image Retrieval Based on Edge Histogram Descriptor of MPEG-7

    Get PDF
    A major research area in computer vision is content-based image retrieval. MPEG-7 sets up a list of descriptions of the structured image content. We examine the weakness and lack of retrieval approaches based on global characteristics in this study by incorporating the commonly used feature descriptors of MPEG-7. In the meantime, to satisfy user requirements for assessing spatial information similarities, an image retrieval approach based on texture region features for MPEG-7 is recommended. Retrieval tests show the validity and efficiency of our approach. This paper also defines our approach to color quantization, extraction, and matching processes of features and so on in depth
    corecore