15,629 research outputs found

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Point Pair Feature based Object Detection for Random Bin Picking

    Full text link
    Point pair features are a popular representation for free form 3D object detection and pose estimation. In this paper, their performance in an industrial random bin picking context is investigated. A new method to generate representative synthetic datasets is proposed. This allows to investigate the influence of a high degree of clutter and the presence of self similar features, which are typical to our application. We provide an overview of solutions proposed in literature and discuss their strengths and weaknesses. A simple heuristic method to drastically reduce the computational complexity is introduced, which results in improved robustness, speed and accuracy compared to the naive approach

    Relating visual and semantic image descriptors

    Get PDF
    This paper addresses the automatic analysis of visual content and extraction of metadata beyond pure visual descriptors. Two approaches are described: Automatic Image Annotation (AIA) and Confidence Clustering (CC). AIA attempts to automatically classify images based on two binary classifiers and is designed for the consumer electronics domain. Contrastingly, the CC approach does not attempt to assign a unique label to images but rather to organise the database based on concepts

    Visual-hint Boundary to Segment Algorithm for Image Segmentation

    Full text link
    Image segmentation has been a very active research topic in image analysis area. Currently, most of the image segmentation algorithms are designed based on the idea that images are partitioned into a set of regions preserving homogeneous intra-regions and inhomogeneous inter-regions. However, human visual intuition does not always follow this pattern. A new image segmentation method named Visual-Hint Boundary to Segment (VHBS) is introduced, which is more consistent with human perceptions. VHBS abides by two visual hint rules based on human perceptions: (i) the global scale boundaries tend to be the real boundaries of the objects; (ii) two adjacent regions with quite different colors or textures tend to result in the real boundaries between them. It has been demonstrated by experiments that, compared with traditional image segmentation method, VHBS has better performance and also preserves higher computational efficiency.Comment: 45 page
    corecore