65,206 research outputs found

    Rethinking the Pipeline of Demosaicing, Denoising and Super-Resolution

    Full text link
    Incomplete color sampling, noise degradation, and limited resolution are the three key problems that are unavoidable in modern camera systems. Demosaicing (DM), denoising (DN), and super-resolution (SR) are core components in a digital image processing pipeline to overcome the three problems above, respectively. Although each of these problems has been studied actively, the mixture problem of DM, DN, and SR, which is a higher practical value, lacks enough attention. Such a mixture problem is usually solved by a sequential solution (applying each method independently in a fixed order: DM →\to DN →\to SR), or is simply tackled by an end-to-end network without enough analysis into interactions among tasks, resulting in an undesired performance drop in the final image quality. In this paper, we rethink the mixture problem from a holistic perspective and propose a new image processing pipeline: DN →\to SR →\to DM. Extensive experiments show that simply modifying the usual sequential solution by leveraging our proposed pipeline could enhance the image quality by a large margin. We further adopt the proposed pipeline into an end-to-end network, and present Trinity Enhancement Network (TENet). Quantitative and qualitative experiments demonstrate the superiority of our TENet to the state-of-the-art. Besides, we notice the literature lacks a full color sampled dataset. To this end, we contribute a new high-quality full color sampled real-world dataset, namely PixelShift200. Our experiments show the benefit of the proposed PixelShift200 dataset for raw image processing.Comment: Code is available at: https://github.com/guochengqian/TENe

    Symmetric Uncertainty-Aware Feature Transmission for Depth Super-Resolution

    Full text link
    Color-guided depth super-resolution (DSR) is an encouraging paradigm that enhances a low-resolution (LR) depth map guided by an extra high-resolution (HR) RGB image from the same scene. Existing methods usually use interpolation to upscale the depth maps before feeding them into the network and transfer the high-frequency information extracted from HR RGB images to guide the reconstruction of depth maps. However, the extracted high-frequency information usually contains textures that are not present in depth maps in the existence of the cross-modality gap, and the noises would be further aggravated by interpolation due to the resolution gap between the RGB and depth images. To tackle these challenges, we propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR. (1) For the resolution gap, SUFT builds an iterative up-and-down sampling pipeline, which makes depth features and RGB features spatially consistent while suppressing noise amplification and blurring by replacing common interpolated pre-upsampling. (2) For the cross-modality gap, we propose a novel Symmetric Uncertainty scheme to remove parts of RGB information harmful to the recovery of HR depth maps. Extensive experiments on benchmark datasets and challenging real-world settings suggest that our method achieves superior performance compared to state-of-the-art methods. Our code and models are available at https://github.com/ShiWuxuan/SUFT.Comment: 10 pages, 9 figures, accepted by the 30th ACM International Conference on Multimedia (ACM MM 22

    A Deep Primal-Dual Network for Guided Depth Super-Resolution

    Full text link
    In this paper we present a novel method to increase the spatial resolution of depth images. We combine a deep fully convolutional network with a non-local variational method in a deep primal-dual network. The joint network computes a noise-free, high-resolution estimate from a noisy, low-resolution input depth map. Additionally, a high-resolution intensity image is used to guide the reconstruction in the network. By unrolling the optimization steps of a first-order primal-dual algorithm and formulating it as a network, we can train our joint method end-to-end. This not only enables us to learn the weights of the fully convolutional network, but also to optimize all parameters of the variational method and its optimization procedure. The training of such a deep network requires a large dataset for supervision. Therefore, we generate high-quality depth maps and corresponding color images with a physically based renderer. In an exhaustive evaluation we show that our method outperforms the state-of-the-art on multiple benchmarks.Comment: BMVC 201
    • …
    corecore