1,581 research outputs found

    Techniques in Image Segmentations, its Limitations and Future Directions

    Get PDF
    There many techniques, used for image segmentation but few of them face problems like: improper utilization of spatial information. In this paper, combined fuzzy c-means algorithm (FCM) with modified Particle Swarm Optimization (PSO) to improve the search ability of PSO and to integrate spatial information into the membership function for clustering is used. Here, in this paper discussion on segmentation techniques with their limitations is done. This would help in determining image segmentation method which would result to improved accuracy and performance

    An Optimization Clustering Algorithm Based on Texture Feature Fusion for Color Image Segmentation

    Get PDF
    We introduce a multi-feature optimization clustering algorithm for color image segmentation. The local binary pattern, the mean of the min-max difference, and the color components are combined as feature vectors to describe the magnitude change of grey value and the contrastive information of neighbor pixels. In clustering stage, it gets the initial clustering center and avoids getting into local optimization by adding mutation operator of genetic algorithm to particle swarm optimization. Compared with well-known methods, the proposed method has an overall better segmentation performance and can segment image more accurately by evaluating the ratio of misclassification.© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    MMFO: modified moth flame optimization algorithm for region based RGB color image segmentation

    Get PDF
    Region-based color image segmentation is elementary steps in image processing and computer vision. Color image segmentation is a region growing approach in which RGB color image is divided into the different cluster based on their pixel properties. The region-based color image segmentation has faced the problem of multidimensionality. The color image is considered in five-dimensional problems, in which three dimensions in color (RGB) and two dimensions in geometry (luminosity layer and chromaticity layer). In this paper, L*a*b color space conversion has been used to reduce the one dimension and geometrically it converts in the array hence the further one dimension has been reduced. This paper introduced an improved algorithm MMFO (Modified Moth Flame Optimization) Algorithm for RGB color image Segmentation which is based on bio-inspired techniques for color image segmentation. The simulation results of MMFO for region based color image segmentation are performed better as compared to PSO and GA, in terms of computation times for all the images. The experiment results of this method gives clear segments based on the different color and the different no. of clusters is used during the segmentation process

    Data fusion by using machine learning and computational intelligence techniques for medical image analysis and classification

    Get PDF
    Data fusion is the process of integrating information from multiple sources to produce specific, comprehensive, unified data about an entity. Data fusion is categorized as low level, feature level and decision level. This research is focused on both investigating and developing feature- and decision-level data fusion for automated image analysis and classification. The common procedure for solving these problems can be described as: 1) process image for region of interest\u27 detection, 2) extract features from the region of interest and 3) create learning model based on the feature data. Image processing techniques were performed using edge detection, a histogram threshold and a color drop algorithm to determine the region of interest. The extracted features were low-level features, including textual, color and symmetrical features. For image analysis and classification, feature- and decision-level data fusion techniques are investigated for model learning using and integrating computational intelligence and machine learning techniques. These techniques include artificial neural networks, evolutionary algorithms, particle swarm optimization, decision tree, clustering algorithms, fuzzy logic inference, and voting algorithms. This work presents both the investigation and development of data fusion techniques for the application areas of dermoscopy skin lesion discrimination, content-based image retrieval, and graphic image type classification --Abstract, page v

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    AN OVERVIEW OF IMAGE SEGMENTATION ALGORITHMS

    Get PDF
    Image segmentation is a puzzled problem even after four decades of research. Research on image segmentation is currently conducted in three levels. Development of image segmentation methods, evaluation of segmentation algorithms and performance and study of these evaluation methods. Hundreds of techniques have been proposed for segmentation of natural images, noisy images, medical images etc. Currently most of the researchers are evaluating the segmentation algorithms using ground truth evaluation of (Berkeley segmentation database) BSD images. In this paper an overview of various segmentation algorithms is discussed. The discussion is mainly based on the soft computing approaches used for segmentation of images without noise and noisy images and the parameters used for evaluating these algorithms. Some of these techniques used are Markov Random Field (MRF) model, Neural Network, Clustering, Particle Swarm optimization, Fuzzy Logic approach and different combinations of these soft techniques
    corecore