2,262 research outputs found

    Supervised saliency map driven segmentation of lesions in dermoscopic images

    Get PDF
    Lesion segmentation is the first step in most automatic melanoma recognition systems. Deficiencies and difficulties in dermoscopic images such as color inconstancy, hair occlusion, dark corners, and color charts make lesion segmentation an intricate task. In order to detect the lesion in the presence of these problems, we propose a supervised saliency detection method tailored for dermoscopic images based on the discriminative regional feature integration (DRFI). A DRFI method incorporates multilevel segmentation, regional contrast, property, background descriptors, and a random forest regressor to create saliency scores for each region in the image. In our improved saliency detection method, mDRFI, we have added some new features to regional property descriptors. Also, in order to achieve more robust regional background descriptors, a thresholding algorithm is proposed to obtain a new pseudo-background region. Findings reveal that mDRFI is superior to DRFI in detecting the lesion as the salient object in dermoscopic images. The proposed overall lesion segmentation framework uses detected saliency map to construct an initial mask of the lesion through thresholding and postprocessing operations. The initial mask is then evolving in a level set framework to fit better on the lesion's boundaries. The results of evaluation tests on three public datasets show that our proposed segmentation method outperforms the other conventional state-of-the-art segmentation algorithms and its performance is comparable with most recent approaches that are based on deep convolutional neural networks

    Visual Saliency Based on Multiscale Deep Features

    Get PDF
    Visual saliency is a fundamental problem in both cognitive and computational sciences, including computer vision. In this CVPR 2015 paper, we discover that a high-quality visual saliency model can be trained with multiscale features extracted using a popular deep learning architecture, convolutional neural networks (CNNs), which have had many successes in visual recognition tasks. For learning such saliency models, we introduce a neural network architecture, which has fully connected layers on top of CNNs responsible for extracting features at three different scales. We then propose a refinement method to enhance the spatial coherence of our saliency results. Finally, aggregating multiple saliency maps computed for different levels of image segmentation can further boost the performance, yielding saliency maps better than those generated from a single segmentation. To promote further research and evaluation of visual saliency models, we also construct a new large database of 4447 challenging images and their pixelwise saliency annotation. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks, improving the F-Measure by 5.0% and 13.2% respectively on the MSRA-B dataset and our new dataset (HKU-IS), and lowering the mean absolute error by 5.7% and 35.1% respectively on these two datasets.Comment: To appear in CVPR 201

    Inner and Inter Label Propagation: Salient Object Detection in the Wild

    Full text link
    In this paper, we propose a novel label propagation based method for saliency detection. A key observation is that saliency in an image can be estimated by propagating the labels extracted from the most certain background and object regions. For most natural images, some boundary superpixels serve as the background labels and the saliency of other superpixels are determined by ranking their similarities to the boundary labels based on an inner propagation scheme. For images of complex scenes, we further deploy a 3-cue-center-biased objectness measure to pick out and propagate foreground labels. A co-transduction algorithm is devised to fuse both boundary and objectness labels based on an inter propagation scheme. The compactness criterion decides whether the incorporation of objectness labels is necessary, thus greatly enhancing computational efficiency. Results on five benchmark datasets with pixel-wise accurate annotations show that the proposed method achieves superior performance compared with the newest state-of-the-arts in terms of different evaluation metrics.Comment: The full version of the TIP 2015 publicatio
    • …
    corecore