74,506 research outputs found

    Hand gesture recognition based on signals cross-correlation

    Get PDF

    Wide field weak lensing observations of A1835 and A2204

    Full text link
    We present mass reconstructions from weak lensing for the galaxy clusters A1835 and A2204 over 34'x34' fields using data from the ESO/MPG Wide Field Imager. Using a background galaxy population of 22<R<25.5 we detect the gravitational shear of A1835 at 8.8 sigma significance, and obtain best-fit mass profiles of sigma_v=1233^{+66}_{-70} km/s for a singular isothermal sphere model and r_{200}=1550 h^{-1} kpc, c=2.96 for a `universal' CDM profile. Using a color-selected background galaxy population of 22<R<25.8 we detect the gravitational shear of A2204 at 7.2 sigma significance, and obtain best-fit mass profiles of sigma_v=1035^{+65}_{-71} km/s for a SIS model and r_{200}=1310 h^{-1} km/s, c=6.3 for a `universal' CDM profile. The gravitational shear at distances greater than 10' is significantly detected for both clusters. The best fit weak lensing cluster masses agree well with both X-ray and dynamical mass measurements, although the central concentration of A1835 is much lower in the weak lensing mass profile than that measured by recent Chandra results. We suggest that this lower concentration is most likely a combination of contamination of the 'background' galaxy population with cluster dwarf galaxies and the effect of a prolate or tri-axial cluster core with the major axis lying near the plane of the sky. We also detect a number of additional structures at moderate significance, some of which appear to be sub-haloes associated with the clusters.Comment: accepted to A&A, 14 pages, 13 figures, version with higher quality images can be found at http://www.uni-bonn.de/~clow

    Object Discovery via Cohesion Measurement

    Full text link
    Color and intensity are two important components in an image. Usually, groups of image pixels, which are similar in color or intensity, are an informative representation for an object. They are therefore particularly suitable for computer vision tasks, such as saliency detection and object proposal generation. However, image pixels, which share a similar real-world color, may be quite different since colors are often distorted by intensity. In this paper, we reinvestigate the affinity matrices originally used in image segmentation methods based on spectral clustering. A new affinity matrix, which is robust to color distortions, is formulated for object discovery. Moreover, a Cohesion Measurement (CM) for object regions is also derived based on the formulated affinity matrix. Based on the new Cohesion Measurement, a novel object discovery method is proposed to discover objects latent in an image by utilizing the eigenvectors of the affinity matrix. Then we apply the proposed method to both saliency detection and object proposal generation. Experimental results on several evaluation benchmarks demonstrate that the proposed CM based method has achieved promising performance for these two tasks.Comment: 14 pages, 14 figure

    Visual analysis for drum sequence transcription

    Get PDF
    A system is presented for analysing drum performance video sequences. A novel ellipse detection algorithm is introduced that automatically locates drum tops. This algorithm fits ellipses to edge clusters, and ranks them according to various fitness criteria. A background/foreground segmentation method is then used to extract the silhouette of the drummer and drum sticks. Coupled with a motion intensity feature, this allows for the detection of ‘hits’ in each of the extracted regions. In order to obtain a transcription of the performance, each of these regions is automatically labeled with the corresponding instrument class. A partial audio transcription and color cues are used to measure the compatibility between a region and its label, the Kuhn-Munkres algorithm is then employed to find the optimal labeling. Experimental results demonstrate the ability of visual analysis to enhance the performance of an audio drum transcription system

    The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs

    Full text link
    The Coma cluster was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in 2007, the partially completed survey still covers ~50% of the core high-density region in Coma. Observations were performed for 25 fields that extend over a wide range of cluster-centric radii (~1.75 Mpc) with a total coverage area of 274 arcmin^2. The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present reprocessed images and SExtractor source catalogs for our survey fields, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SExtractor Kron magnitudes based only on the measured source flux and half-light radius. We have performed photometry for ~73,000 unique objects; one-half of our detections are brighter than the 10-sigma point-source detection limit at F814W=25.8 mag (AB). The slight majority of objects (60%) are unresolved or only marginally resolved by ACS. We estimate that Coma members are 5-10% of all source detections, which consist of a large population of unresolved objects (primarily GCs but also UCDs) and a wide variety of extended galaxies from a cD galaxy to dwarf LSB galaxies. The red sequence of Coma member galaxies has a constant slope and dispersion across 9 magnitudes (-21<M_F814W<-13). The initial data release for the HST-ACS Coma Treasury program was made available to the public in 2008 August. The images and catalogs described in this study relate to our second data release.Comment: Accepted for publication in ApJS. A high-resolution version is available at http://archdev.stsci.edu/pub/hlsp/coma/release2/PaperII.pd
    • 

    corecore