644 research outputs found

    High Efficiency and Wide Color Gamut Liquid Crystal Displays

    Get PDF
    Liquid crystal display (LCD) has become ubiquitous and indispensable in our daily life. Recently, it faces strong competition from organic light emitting diode (OLED). In order to maintain a strong leader position, LCD camp has an urgent need to enrich the color performance and reduce the power consumption. This dissertation focuses on solving these two emerging and important challenges. In the first part of the dissertation we investigate the quantum dot (QD) technology to improve the both the color gamut and the light efficiency of LCD. QD emits saturated color and grants LCD the capability to reproduce color vivid images. Moreover, the QD emission spectrum can be custom designed to match to transmission band of color filters. To fully take advantage of QD\u27s unique features, we propose a systematic modelling of the LCD backlight and optimize the QD spectrum to simultaneously maximize the color gamut and light efficiency. Moreover, QD enhanced LCD demonstrates several advantages: excellent ambient contrast, negligible color shift and controllable white point. Besides three primary LCD, We also present a spatiotemporal four-primary QD enhanced LCD. The LCD\u27s color is generated partially from time domain and partially from spatial domain. As a result, this LCD mode offers 1.5ร— increment in spatial resolution, 2ร— brightness enhancement, slightly larger color gamut and mitigated LC response requirement (~4ms). It can be employed in the commercial TV to meet the challenging Energy star 6 regulation. Besides conventional LCD, we also extend the QD applications to liquid displays and smart lighting devices. The second part of this dissertation focuses on improving the LCD light efficiency. Conventional LCD system has fairly low light efficiency (4%~7%) since polarizers and color filters absorb 50% and 67% of the incoming light respectively. We propose two approaches to reduce the light loss within polarizers and color filters. The first method is a polarization preserving backlight system. It can be combined with linearly polarized light source to boost the LCD efficiency. Moreover, this polarization preserving backlight offers high polarization efficiency (~77.8%), 2.4ร— on-axis luminance enhancement, and no need for extra optics films. The second approach is a LCD backlight system with simultaneous color/polarization recycling. We design a novel polarizing color filter with high transmittance ( \u3e 90%), low absorption loss (~3.3%), high extinction ratio (\u3e10,000:1) and large angular tolerance (up to ยฑ50หš). This polarizing color filter can be used in LCD system to introduce the color/polarization recycling and accordingly boost LCD efficiency by ~3 times. These two approaches open new gateway for ultra-low power LCDs. In the final session of this dissertation, we demonstrate a low power and color vivid reflective liquid crystal on silicon (LCOS) display with low viscosity liquid crystal mixture. Compared with commercial LC material, the new LC mixture offers ~4X faster response at 20oC and ~8X faster response at -20ยฐC. This fast response LC material enables the field-sequential-color (FSC) driving for power saving. It also leads to several attractive advantages: submillisecond response time at room temperature, vivid color even at -20oC, high brightness, excellent ambient contrast ratio, and suppressed color breakup. With this material improvement, LCOS display can be promising for the emerging wearable display market

    Using flat phosphor layer in dual-layer remote phosphor configuration to improve luminous efficacy

    Get PDF
    The phosphor layer shape and components distances are the subjects proposed to advance the quality of WLEDs in this article. The two distances, between phosphor layers (d1) and between the phosphor layer and the LED chip (d2) in Flat dual-remote phosphor (FDRP) and Concave dual-remote phosphor (CDRP) were examined by experiments to determine their impacts on WLEDs lighting performances. The results suggest that FDRP is a better option than CDRP for lighting performance. In each respective structure, the distances influence the lighting capacity and color output whenever they fluctuate. Therefore, to effectively control and study this phenomenon, the correlated color temperature is maintained at 8500 K, and the concentration of phosphor material is altered while the distances are changing. When d1 and d2 are at the starting value of 0, the recorded lumen output and chromatic performance of lighting devices are the lowest and begin to increase as d1 and d2 expand. Bigger d1 and d2 mean bigger scattering area and better chromatic light integration, which leads to higher color quality. Detailed results present that optimal values of d1 or d2 for the highest lumen output of 1020 lm are 0.08 mm or 0.63 mm, respectively. Meanwhile the lowest color deviation is accomplished with d1=0.64 mm or d2=1.35 mm

    Quantum dot polymer composite materials for light management in optoelectronic devices

    Get PDF
    This dissertation will highlight a path to achieve high conversion efficiency of optoelectronic devices, including photovoltaic concentrators and LED display modules. Semiconductor nanocrystals, also known as quantum dots (QDs), serve as the pivotal luminescent materials in these devices. A quantum dots encapsulation method was developed here to homogeneously disperse QDs in a transparent polymer matrix, enabling high optical quality devices and thorough investigation of light material interactions. A luminescent solar concentrator (LSC) typically consists of a luminophore embedded in a polymer sheet with a high-performance solar cell attached at the side. In such a device, sunlight is absorbed in a luminophore, emitted into the waveguide modes of the polymer sheet, and directed to a photovoltaic cell where it is absorbed and converted to electricity. Since the area of the polymer sheet is greater than the area of the photovoltaic cell, concentration of the solar photon flux is achieved. Approaching high concentration ratio will require a luminophore with large Stokes Shift, high quantum yield, minimal overlap between absorption and emission, and a narrow emission spectrum. We have examined the performance of LSCs utilizing CdSe/CdS core-shell QDs, with significantly reduced absorption-emission overlap and long propagation distances in the waveguide. Furthermore, a distributed Bragg reflector dramatically mitigates the negative impact of scattering in the waveguide, allowing efficient photon collection and concentration ratio. White-light LED is achieved by using a phosphor material to convert monochromatic light from a blue or UV LED to broad-spectrum white light. However, tradition yellow phosphors suffer from low color rendering index due to the broad emission spectrum of the phosphors. QDs have been proposed as better candidate than traditional yellow phosphors due to their narrow and tunable emission spectrum, and wide absorption spectrum in the UV-blue spectrum range. We have fabricated QD-polymer thin films as color conversion layers on blue LED via different methods, including spin-coating, drop casting and electrohydrodynamic jet printing. The polymer surface has been incorporated with nano-sized features to create photonic crystal structure. Up to 8 times QD excitation and emission enhancement have been demonstrated. We have also designed and fabricated QD-polymer based concentrating cavity on blue LED that acts both as color conversion layer and light concentrator. Distributed Bragg reflector and sputtered silver have been used as reflectors surrounding QD-polymer thin film. The exterior of the concentrator cavity was coated with black absorber to suppress light reflection, and a small aperture in the center allows concentrated photons to exit. High power conversion efficiency and high ambient contrast have been achieved in module devices

    ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์‘์šฉ์„ ์œ„ํ•œ 3D ํ”„๋ฆฐํŒ… ๊ธฐ๋ฐ˜ ๋งž์ถคํ˜• ๊ด‘ํ•™ ์š”์†Œ์˜ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ํ™์šฉํƒ.์ผ๋ฐ˜์ ์œผ๋กœ ์ œ์กฐ ๊ณต์ •์€ ์ ˆ์‚ญ ๋ฐฉ์‹๊ณผ ์ ์ธต ๋ฐฉ์‹์œผ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ์ด ์ค‘์—์„œ ์ ์ธต ๋ฐฉ์‹ ๊ณต์ •์€ ์ €๋น„์šฉ ๋ฐ ๋‹จ์‹œ๊ฐ„์œผ๋กœ ๋ณต์žกํ•œ ํ˜•ํƒœ์˜ ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์–ด์„œ ์ด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์™€ ๊ฐœ๋ฐœ์ด ๊พธ์ค€ํžˆ ์ง„ํ–‰๋˜์–ด์™”๋‹ค. ํŠนํžˆ 3D ํ”„๋ฆฐํŒ…์€ ์ ์ธต ๋ฐฉ์‹ ๊ณต์ • ์ค‘์—์„œ ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ, ๊ธฐ๊ณ„ ๋ถ€ํ’ˆ ๋ฐ ์ƒ์ฒด ๊ธฐ๊ด€ ์ œ์กฐ ๋“ฑ์˜ ๋ถ„์•ผ์—์„œ๋Š” ์ด๋ฏธ ์ƒ์šฉํ™”๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ „์ž ์†Œ์ž ๋ฐ ๊ด‘ํ•™ ์š”์†Œ ๋ถ„์•ผ์—์„œ์˜ 3D ํ”„๋ฆฐํŒ…์˜ ํ™œ์šฉ์€ ์—ฌ์ „ํžˆ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ ๋˜๋Š” ์‹œ์ œํ’ˆ ์ œ์ž‘ ๋‹จ๊ณ„์— ๋จธ๋ฌด๋ฅด๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ, ์ปฌ๋Ÿฌ ํ•„ํ„ฐ ๋“ฑ์ด 3D ํ”„๋ฆฐํŒ…์œผ๋กœ ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ๊ฐ€๋Šฅ์„ฑ ์žˆ๋Š” ๊ด‘ํ•™ ์š”์†Œ๋กœ์„œ ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์— ๋„๋ฆฌ ์‚ฌ์šฉ๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜์ง€๋งŒ ์—ฌ์ „ํžˆ ์ƒ์šฉํ™”๋ฅผ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰ ์ค‘์ด๋‹ค. ๋˜ํ•œ 3D ํ”„๋ฆฐํŒ…์„ ์ด์šฉํ•œ ๊ด‘ํ•™ ์š”์†Œ์˜ ์ œ์ž‘์€ ์†Œ์žฌ, ๊ธธ์ด ์Šค์ผ€์ผ, ํ˜•์ƒ ๋ฐ ์‘์šฉ ๋ฐฉ์•ˆ ๋“ฑ์—์„œ๋„ ์ œํ•œ์ด ๋งŽ์€ ์ƒํ™ฉ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์—์„œ์˜ 3D ํ”„๋ฆฐํŒ… ๋œ ๊ด‘ํ•™ ์š”์†Œ์˜ ์œ ์šฉ์„ฑ์„ ํ™•์žฅํ•ด์•ผ ํ•˜๋ฉฐ, ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ธ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•ด์•ผ ํ•œ๋‹ค. ์ฒซ์งธ, ๋‹ค์–‘ํ•œ ๋ฐฉ์‹์˜ 3D ํ”„๋ฆฐํŒ… ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋งˆ์ดํฌ๋กœ๋ฏธํ„ฐ์—์„œ ์„ผํ‹ฐ๋ฏธํ„ฐ๊นŒ์ง€ ๊ด‘๋ฒ”์œ„์˜ ๊ธธ์ด ์Šค์ผ€์ผ์„ ๊ฐ€์ง€๋Š” ๊ตฌ์กฐ๋ฌผ์˜ ์ œ์ž‘์ด ๊ฐ€๋Šฅํ•ด์•ผ ํ•œ๋‹ค. ๋‘˜์งธ, ์ž„์˜์˜ ๊ณก๋ฉด, ๊ณ„์ธต์  ๊ตฌ์กฐ ๋“ฑ ๋ณต์žกํ•œ ํ˜•์ƒ์˜ ๊ตฌ์กฐ๋ฌผ์„ ์‰ฝ๊ฒŒ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์…‹์งธ, ๋‹จ๋‹จํ•œ ์†Œ์žฌ ๋Œ€์‹  ํƒ„์„ฑ์ฒด์™€ ๊ฐ™์€ ์†Œํ”„ํŠธ ์†Œ์žฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ด‘ํ•™์ ์ธ ๊ธฐ๋Šฅ์„ ์šฉ์ดํ•˜๊ฒŒ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋™๊ธฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์‘์šฉ์„ ์œ„ํ•œ 3D ํ”„๋ฆฐํŒ… ๊ธฐ๋ฐ˜ ๋งž์ถคํ˜• ๊ด‘ํ•™ ์š”์†Œ์˜ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋ณด๊ณ ํ•œ๋‹ค. 3D ํ”„๋ฆฐํŒ… ๊ธฐ๋ฐ˜ ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ๋งคํฌ๋กœ ์Šค์ผ€์ผ, ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ ๊ทธ๋ฆฌ๊ณ  ๋งคํฌ๋กœ ๋ฐ ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ์ด ํ˜ผํ•ฉ๋œ ๊ณ„์ธต์  ๊ตฌ์กฐ ๋“ฑ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ  ๊ฐ๊ฐ์— ๋Œ€ํ•œ ์‘์šฉ ๋ถ„์•ผ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋งคํฌ๋กœ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™ ์š”์†Œ๋กœ๋Š” ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ์š”์†Œ์ธ ๋ Œ์ฆˆ์™€ ๊ฑฐ์šธ์„ ์„ ํƒํ•œ๋‹ค. ๋ Œ์ฆˆ๋Š” ๊ณต์••์‹ ๋””์ŠคํŽœ์‹ฑ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์‹ค๋ฆฐ๋“œ๋ฆฌ์ปฌ ์Œ ํ˜•ํƒœ๋กœ ์ œ์ž‘๋˜์—ˆ์œผ๋ฉฐ, ์‹ฌ๋ฆฌ์Šค ๋ชจ๋“ˆ๋Ÿฌ ํ‰ํŒ์‹ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ตฌํ˜„์„ ์œ„ํ•ด ์ ์šฉ๋œ๋‹ค. ๋˜ํ•œ ์šฉ์œต ์ ์ธต ๋ฐฉ์‹์˜ 3D ํ”„๋ฆฐํŒ…์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ ๋ชฐ๋“œ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฑฐ์šธ์„ ์ œ์ž‘ํ•˜๊ณ , ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹ฌ๋ฆฌ์Šค ๋ชจ๋“ˆ๋Ÿฌ ์ปค๋ธŒ๋“œ ์—ฃ์ง€ ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ๊ตฌํ˜„ํ•œ๋‹ค. ์ด์™€ ๊ฐ™์ด ๋ชจ๋“ˆ๋Ÿฌ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ด์Œ์ƒˆ ๋ถ€๋ถ„์— 3D ํ”„๋ฆฐํŒ…์œผ๋กœ ์ œ์ž‘๋œ ๋ Œ์ฆˆ ๋˜๋Š” ๊ฑฐ์šธ์„ ๋ถ€์ฐฉํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํ™”๋ฉด์„ ์‹ฌ๋ฆฌ์Šค๋กœ ํ™•์žฅํ•˜๋Š” ๊ธฐ์ˆ ์„ ์ œ์‹œํ•˜๊ณ , ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๋””์Šคํ”Œ๋ ˆ์ด์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™ ์š”์†Œ๋กœ๋Š” ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ์—์„œ ์ƒ‰ ๋ณ€ํ™˜๊ณผ ๊ด‘ ์ถ”์ถœ ๊ธฐ๋Šฅ์„ ๋™์‹œ์— ๋‚˜ํƒ€๋‚ด๋Š” ์ƒ‰ ๋ณ€ํ™˜ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ๋ฅผ ์„ ํƒํ•œ๋‹ค. ์–‘์ž ์ /๊ด‘ ๊ฒฝํ™”์„ฑ ๊ณ ๋ถ„์ž ๋ณตํ•ฉ์ฒด์˜ ์ „๊ธฐ์ˆ˜๋ ฅํ•™์  ํ”„๋ฆฐํŒ…์„ ํ†ตํ•ด ์–‘์ž ์ ์ด ๋‚ด์žฅ๋œ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ƒ‰ ๋ณ€ํ™˜ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ๋ฅผ ์ œ์ž‘ํ•˜๋ฉฐ, ์ด๋ฅผ ์ฒญ์ƒ‰ ๋งˆ์ดํฌ๋กœ ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ ์–ด๋ ˆ์ด์˜ ๋ฐœ๊ด‘๋ถ€ ์ƒ์— ์ ์šฉํ•˜์—ฌ ํ’€ ์ปฌ๋Ÿฌ ๋งˆ์ดํฌ๋กœ ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ ๋””์Šคํ”Œ๋ ˆ์ด๋กœ์˜ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋งคํฌ๋กœ ๋ฐ ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ์ด ํ˜ผํ•ฉ๋œ ๊ณ„์ธต์  ๊ตฌ์กฐ์˜ ๊ด‘ํ•™ ์š”์†Œ๋กœ์„œ ๋””์ŠคํŽœ์‹ฑ ๋ฐ ๊ฑด์‹ ๋Ÿฌ๋น™ ๊ณผ์ •์˜ ์กฐํ•ฉ์œผ๋กœ ์ œ์ž‘๋œ ๊ฒน๋ˆˆ ํ˜•ํƒœ๋ฅผ ๋ชจ์‚ฌํ•œ ๋ Œ์ฆˆ ๊ตฌ์กฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋ฐ˜๊ตฌ ํ˜•ํƒœ์˜ ๋งคํฌ๋กœ ๋ Œ์ฆˆ๋ฅผ ๋””์ŠคํŽœ์‹ฑ์œผ๋กœ ํ˜•์„ฑํ•˜๊ณ , ๋งคํฌ๋กœ ๋ Œ์ฆˆ์˜ ๊ณก๋ฉด ์ƒ์— ๋‹จ์ธต์˜ ๋งˆ์ดํฌ๋กœ ์ž…์ž์˜ ๋ฐฐ์—ด์„ ์–ป๊ธฐ ์œ„ํ•ด ๊ฑด์‹ ๋Ÿฌ๋น™ ๊ณต์ •์„ ์ง„ํ–‰ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์œผ๋กœ ํ˜•์„ฑ๋œ ๊ณ„์ธต์  ๊ตฌ์กฐ๊ฐ€ ์†Œํ”„ํŠธํ•œ ์†Œ์žฌ๋กœ ๋ณต์ œ๋˜์–ด์„œ ์‹ ์ถ•์„ฑ์„ ๊ฐ€์ง€๋Š” ๊ฒน๋ˆˆ ํ˜•ํƒœ ๋ชจ์‚ฌ ๊ตฌ์กฐ๊ฐ€ ์™„์„ฑ๋œ๋‹ค. ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ ์–ด๋ ˆ์ด๋Š” ๋งคํฌ๋กœ ๋ Œ์ฆˆ์˜ ํ‘œ๋ฉด์„ ๋”ฐ๋ผ ํ˜•์„ฑ๋˜๊ณ  ๋ฆฌ์ง€๋“œ ์•„์ผ๋žœ๋“œ๋กœ ์—ญํ• ์„ ํ•˜์—ฌ, ์ „์ฒด ๊ณ„์ธต์  ๊ตฌ์กฐ์— ๊ธฐ๊ณ„์  ๋ณ€ํ˜•์ด ๊ฐ€ํ•ด์ ธ ๋งคํฌ๋กœ ๋ Œ์ฆˆ์˜ ๋ชจ์–‘์ด ๋ณ€ํ˜•๋˜์–ด๋„ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ๋Š” ํ˜•์ƒ๊ณผ ํ•ด์ƒ๋„, ์ดˆ์  ๊ฑฐ๋ฆฌ ๋“ฑ์˜ ๊ด‘ํ•™์  ํŠน์„ฑ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์€ 3D ํ”„๋ฆฐํŒ…์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์™€ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ์ œ์ž‘ํ•˜๊ณ  ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์—ฌ๋Ÿฌ ์‘์šฉ์„ ๋ณด์—ฌ์คŒ์œผ๋กœ์„œ ์•ž์œผ๋กœ์˜ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ฐ ๊ฐœ๋ฐœ ๋ฐฉํ–ฅ์„ฑ์„ ์ œ์‹œํ•˜๋Š” ๊ฒƒ์„ ์ฃผ์š” ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. 3D ํ”„๋ฆฐํŒ… ์„ค๋น„์˜ ๋‹จ๊ฐ€๊ฐ€ ๋‚ฎ์•„์ง€๊ณ  ์ •๋ฐ€๋„ ๋ฐ ํ•ด์ƒ๋„๊ฐ€ ๋†’์•„์ง€๋Š” ์ถ”์„ธ์— ๋”ฐ๋ผ, ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ์‰ฝ๊ฒŒ ๋งŒ๋“ค๊ณ  ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋งž์ถคํ˜• ๊ด‘ํ•™ ๋˜๋Š” ์Šค์Šค๋กœ ๊ตฌํ˜„ํ•˜๋Š” ๊ด‘ํ•™ ๋ถ„์•ผ๊ฐ€ ๋ณ€ํ˜• ๊ฐ€๋Šฅํ•˜๊ณ  ๋ฉ€ํ‹ฐ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™๊ณ„๋กœ ์ ์ฐจ ํ™•๋Œ€๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๊ถ๊ทน์ ์œผ๋กœ๋Š” ์ฐจ์„ธ๋Œ€ ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์— ํ•„์š”ํ•œ ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ์œ„ํ•œ ๊ธฐ์ˆ ์˜ ์ €๋ณ€์„ ๋„“ํžˆ๊ณ , ์ด๋ฅผ ์‚ฐ์—… ์ „๋ฐ˜์— ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ•˜๊ณ ์ž ํ•œ๋‹ค.Generally, the manufacturing process is divided into the subtractive (top-down) type and additive type (bottom-up). Among them, the additive manufacturing process has attracted a lot of attention because it can manufacture products with complex shapes in a low-cost and short-time process. In particular, three-dimensional (3D) printing is a representative method, which has already been commercialized in the field of mechanical components and biomedical organ. However, it remains in the research and development step in the field of electronic devices and optical components. Especially, although 3D printed optical components including microlens and color filter are expected to be widely used in display and imaging systems, it is still under investigation for commercialized products, and there are limitations in terms of materials, length scale, shape, and practical applications of components. Therefore, to overcome these issues, it is required for investigating and expanding the potential usefulness for 3D printed optical components in display and imaging systems to achieve better performance, productivity, and usability in three aspects. First, it should be possible to manufacture structures with a wide range of length scales from micrometer to centimeter through various 3D printing methods. Second, complex shapes such as free-from curved surfaces and hierarchical structures should be easily fabricated. Third, it is necessary to add functionality by manufacturing structures in which tunable functions are introduced using soft materials like an elastomer. Based on the above motivations, 3D printing-based customized optical components for display and imaging system applications are introduced in this dissertation. 3D printed optical components are classified into three types and their applications are showed to verify the scalability of 3D printing: macro-scale, microscale, and hierarchical macro/micro-scale. As macro-scale printed optical components, lens and mirror which are the most basic optical components are selected. The lens is fabricated by a pneumatic-type dispensing method with the form of a cylindrical pair and adopted for demonstration of seamless modular flat panel display. Besides, a seamless modular curved-edge display is also demonstrated with a mirror, which is fabricated from fused deposition modeling (FDM)-type 3D printed mold. By simply attaching a printed lens or mirror onto the seam of the modular display, it is possible to secure seamless screen expansion technology with the various form factor of the display panel. In the case of micro-scale printed optical components, the color-convertible microlens is chosen, which act as a color converter and light extractor simultaneously in a light-emitting diode (LED). By electrohydrodynamic (EHD) printing of quantum dot (QD)/photocurable polymer composite, QD-embedded hemispherical lens shape structures with various sizes are fabricated by adjusting printing conditions. Furthermore, it is applied to a blue micro-LED array for full-color micro-LED display applications. Finally, a tunable bio-inspired compound (BIC) eyes structure with a combination of dispensing and a dry-phase rubbing process is suggested as a hierarchical macro/micro-scale printed optical components. A hemispherical macrolens is formed by the dispensing method, followed by a dry-phase rubbing process for arranging micro particles in monolayer onto the curved surface of the macrolens. This hierarchical structure is replicated in soft materials, which have intrinsic stretchability. Microlens array is formed on the surface of the macrolens and acts as a rigid island, thereby maintaining lens shape, resolution, and focal length even though the mechanical strain is applied to overall hierarchical structures and the shape of the macrolens is changed. The primary purposes of this dissertation are to introduce new concepts of the enabling technologies for 3D printed optical components and to shed new light on them. Optical components can be easily made as 3D printing equipment becomes cheaper and more precise, so the field of Consumer optics or Do it yourself (DIY) optics will be gradually expanded on deformable and multi-scale optics. It is expected that this dissertation can contribute to providing a guideline for utilizing and customizing 3D printed optical components in next-generation display and imaging system applications.Chapter 1. Introduction 1 1.1. Manufacturing Process 1 1.2. Additive Manufacturing 4 1.3. Printed Optical Components 8 1.4. Motivation and Organization of Dissertation 11 Chapter 2. Macro-scale Printed Optical Components 15 2.1. Introduction 15 2.2. Seamless Modular Flat Display with Printed Lens 20 2.2.1. Main Concept 20 2.2.2. Experimental Section 23 2.2.3. Results and Discussion 26 2.3. Seamless Modular Curved-edge Display with Printed Mirror 32 2.3.1. Main Concept 32 2.3.2. Experimental Section 33 2.3.3. Results and Discussion 36 2.4. Conclusion 46 Chapter 3. Micro-scale Printed Optical Components 47 3.1. Introduction 47 3.2. Full-color Micro-LED Array with Printed Color-convertible Microlens 52 3.2.1. Main Concept 52 3.2.2. Experimental Section 54 3.2.3. Results and Discussion 57 3.3. Conclusion 65 Chapter 4. Hierarchical Macro/Micro-scale Printed Optical Components 66 4.1. Introduction 66 4.2. Tunable Bio-inspired Compound Eye with Printing and Dry-phase Rubbing Process 69 4.2.1. Main Concept 69 4.2.2. Experimental Section 71 4.2.3. Results and Discussion 73 4.3. Conclusion 79 Chapter 5. Conclusion 80 5.1. Summary 80 5.2. Limitations and Suggestions for Future Researches 83 References 88 Abstract in Korean (๊ตญ๋ฌธ ์ดˆ๋ก) 107Docto

    Spectrum management for high efficiency photonic devices

    Get PDF
    Spectrum management holds great promise for high-performance photonics devices. Optical elements that split, up- or down-convert the available light to a specified spectrum can result in higher efficiencies in various devices such as photovoltaic cells, photodetectors, and electronic displays. In this thesis, the method of spectrum splitting to efficiently utilize the full spectrum of sunlight in converting from solar energy to electricity was demonstrated. Multi-junction solar cells are already efficient, but further gains are possible by splitting the solar spectrum laterally, rather than vertically, onto electrically isolated cells. A textured thin film was used to diffract two spectral bands to laterally displaced regions in the far field. The optimized optical element having multi-level textures was fabricated using 3D direct laser writing on photoresist. The fabricated samples were optically characterized and potential modifications to achieve even higher efficiencies were pointed out. Further, this thesis demonstrated a new display architecture that can alleviate problems associated with liquid crystal display (LCD) devices: substantial losses in optical intensity due to employed color filters and low ambient contrast ratio because of reflection of external light from the front surface. A luminescent film having quantum dots was placed inside an enclosed microcavity. The design for a high-contrast and high efficiency display comprised an enclosed cavity having a front wall and a back wall, where the front wall comprised a pinhole opening for emission of light from the cavity and the back wall was configured to transmit light into the cavity. The outer surface of the front wall was made to absorb substantially all optical wavelengths of externally incident light so as to appear black. The inner surface of the front wall and sidewalls were highly reflective to promote photon recycling within the cavity and light emission through the pinhole opening. Finally, although the single pixel demonstration served to optimize the optics within the cavity and study the physics of the proposed architecture, a micrometer sized pixel array was proposed since the current portable electronics industry demands displays with large pixel arrays, where each pixel is on the order of micrometers in size. An individually addressable micropixel array was proposed and fabricated using standard microfabrication techniques that can be integrated into commercial displays

    A psychophysical investigation of global illumination algorithms used in augmented reality

    Get PDF
    Global illumination rendering algorithms are capable of producing images that are visually realistic. However, this typically comes at a large computational expense. The overarching goal of this research was to compare different rendering solutions in order to understand why some yield better results when applied to rendering synthetic objects into real photographs. As rendered images are ultimately viewed by human observers, it was logical to use psychophysics to investigate these differences. A psychophysical experiment was conducted judging the composite images for accuracy to the original photograph. In addition, iCAM, an image color appearance model, was used to calculate image differences for the same set of images. In general it was determined that any full global illumination is better than direct illumination solutions only. Also, it was discovered that the full rendering with all of its artifacts is not necessarily an indicator of judged accuracy for the final composite image. Finally, initial results show promise in using iCAM to predict a relationship similar to the psychophysics, which could eventually be used in-the-rendering-loop to achieve photo-realism

    Lifetime and Efficiency of Blue Phosphorescent Organic-Light Emitting Diodes

    Full text link
    Organic light-emitting diodes (OLEDs) are poised to realize high performance for innovative display and lighting applications in the future. However, the development of suitable blue OLEDs remains a challenge which has impeded the progress of large-scale OLED commercialization for more than a decade. Blue devices are critical components for red-green-blue displays and white lighting, but to date suffer from short operational lifetimes as well as a lack of efficient deep blue emitting materials. This thesis aims at understanding the physical background of these issues and providing potential solutions. OLEDs produce photons via radiative recombination of electron-hole bound pairs, called excitons. Fluorescent OLEDs depend on emission from the singlet excitons achieving an electron-to-light conversion, or internal quantum efficiency (IQE), from 25% up to 62.5%. On the other hand, phosphorescent OLEDs (PHOLEDs) exploit the emission from triplet excitons, attaining nearly 100% IQE. In OLED-based products, red and green PHOLEDs are universally used due to their high efficiency and long operational lifetime, while fluorescent OLEDs are still used for the blue emitting component despite their low performance. Thus, the development of long-lived and high efficiency blue PHOLEDs is a key to the success of the technology. In the first part of this thesis, we investigate the nonradiative loss mechanism dominant in deep blue emitting phosphorescent materials. We identify the metal-centered ligand-field states (3MC states) as a major source of efficiency loss and a probability of thermal population to these states increases with the emission energy of the emitter. Thus, we develop tris-cyclometalated Iridium (III) complexes using N-heterocyclic carbene (NHC) ligands that render the energy of the 3MC states inaccessibly high while keeping a wide energy gap for deep blue emission. The NHC-ligand based Ir(III) complex can thereby minimize the nonradiative loss and achieve high IQE in deep blue. In PHOLEDs, the NHC-Ir(III) complexes are used as the emitters, as well as hole transporting and electron blocking components. This multiple use enables a very high brightness operation of deep blue PHOLEDs, potentially suitable for demanding display applications. In the second part of this thesis, we focus on understanding and solving the short lifetime of blue PHOLEDs. We identify the intrinsic mechanism of the device degradation is the bimolecular annihilation between the excited states in the emission layer (EML) that generates the energetically โ€œhotโ€ excited state. If such a hot excited state dissipates its energy on the EML molecule, the resulting chemical bond dissociation and its products permanently deteriorate device performance. The frequency of this failure process increases with the energy of the excited state, particularly severe in blue PHOLEDs compared to red and green emitting devices. Thus, we propose two solutions to this problem: (i) reducing the probability of the bimolecular annihilation via distributing the excited state density and (ii) bypassing the dissociative reaction via thermalizing the hot excited states on the ancillary dopant in the PHOLED EML. The stability of the blue PHOLED employing both strategies is cumulatively improved and a theory is proposed to explain such lifetime enhancement.PHDElectrical & Computer Eng PhDUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/136937/1/jsanglee_1.pd

    DEVELOPMENT OF IONIC CONDUCTIVE CELLULOSE MAT BY SOLUTION BLOW SPINNING AND LASER-INDUCED GRAPHENE FROM PINEAPPLE NANOCELLULOSE FOR USE IN FLEXIBLE ELECTRONIC DEVICES

    Get PDF
    In the face of environmental issues and aiming at electronic devices of rapid production at low cost, this doctoral thesis proposed two new and innovative approaches to obtain substrates, dielectrics, and electrodes from a single biopolymer: cellulose. In a first moment, a simple approach to produce low-cost flexible ionic conductive cellulose mats (ICCMs) using solution blow spinning (SB-Spinning) is reported. The electrochemical properties of the ICCMs were adjusted through infiltration with alkali hydroxides (LiOH, NaOH, or KOH), which enabled of ICCMs application as dielectric and substrate in oxide-based field effect transistors (FETs) and pencil-drawn resistorloaded inverters. The FETs showed good electrical performance under operating voltage <2.5 V, which was strictly associated with the type of alkali ion incorporated, presenting satisfactory performance for the ICCM infiltrated with K+ ion. The inverters with K+ ions also presented good dynamic performance, with a gain close to 2. Regarding the cellulose-based electrodes, a second innovative approach is reported to synthetize laser-induced graphene (LIG) structures from carboxymethyl cellulose (CMC)-based ink containing LIG obtained from cellulose nanocrystals (CNCs) extracted from pineapple leaf fibers (PALFs). To prove this concept, zinc oxide ultraviolet (ZnO UV) sensors were designed varying the amount of LIG from CNCs. Sensor obtained from LIG written directly on paper substrate were also performed. The ZnO UV sensors designed with CMC-based ink showed responsivity 40-fold higher than that of paper direct-written LIG, as well as excellent electrical performance under flexion. These findings may open new promising possibilities for low-consumption wearable electronics, allowing the use of concepts such as the "Internet of Things" and opening the possibility of generating 100% organic cellulose-produced electronic devices.Frente ร s questรตes ambientais e visando dispositivos eletrรดnicos de rรกpida produรงรฃo e baixo custo, este projeto de pesquisa de doutorado propรดs duas abordagens inovadoras para a obtenรงรฃo de substratos, materiais dielรฉtricos e eletrodos a partir de um รบnico biopolรญmero: a celulose. Em um primeiro momento relata-se uma abordagem simples para produzir mantas condutoras iรดnicas de celulose (ICCM) flexรญveis aplicando fiaรงรฃo por sopro em soluรงรฃo (SB-Spinning) seguido da infiltraรงรฃo com hidrรณxidos alcalinos (LiOH, NaOH ou KOH), permitindo sua aplicaรงรฃo como dielรฉtrico e substrato em transistores e inversores com resistor desenhado a lรกpis. Os transistores exibiram um bom desempenho sob tensรฃo de operaรงรฃo abaixo de 2,5 V, apresentando desempenho satisfatรณrio para as mantas infiltradas com K+, alรฉm do inversor apresentar um ganho prรณximo de dois. Visando tambรฉm eletrodos oriundos da celulose, este projeto relatou uma abordagem inovadora para sintetizar grafeno induzido por laser (LIG) a partir de tinta ร  base de carboximetilcelulose (CMC) contendo LIG obtido de nanocristais de celulose (CNCs) do abacaxi. Como prova de conceito, sensores de ZnO UV foram projetados variando a quantidade de LIG dos CNCs na tinta a base de CMC, assim como sensores obtidos por escrita direta de LIG em substrato de papel. Os sensores de ZnO UV flexรญveis formulados com tinta apresentaram responsividade 40 vezes maior que os sensores contendo LIG direto do papel. Essas descobertas podem inaugurar uma nova Era na geraรงรฃo de eletrรดnicos vestรญveis de baixo consumo, permitindo conceitos como "Internet das Coisas", e abrindo a possibilidade de dispositivos 100% orgรขnicos oriundos da celulose

    The Optical Outcoupling of Organic Light Emitting Diodes

    Get PDF
    OLEDs have seen a strong growth in development in recent years, however up to 80% of emitted light may be lost within the OLED stack and in the substrate layers. This thesis investigates the effects of the layer stack on the OLED properties and also studies a number of approaches to substrate structuring and treatment in order to couple light from the devices
    • โ€ฆ
    corecore