296,430 research outputs found

    Color and Shape Recognition

    Get PDF
    The object "car" and "cat" can be easily distinguished by humans, but how these labels are assigned? Grouping these images is easy for a person into different categories, but its very tedious for a computer. Hence, an object recognition system finds objects in the real world from an image. Object recognition algorithms rely on matching, learning or pattern recognition algorithms using appearance-based or feature-based techniques. In this thesis, the use of color and shape attributes as an explicit color and shape representation respectively for object detection is proposed. Color attributes are dense, computationally effective, and when joined with old-fashioned shape features provide pleasing results for object detection. The procedure of shape detection is actually a natural extension of the job of edge detection at the pixel level to the difficulty of global contour detection. A tool for a systematic analysis of edge based shape detection is provided by this filtering scheme. This enables us to find distinctions between objects based on color and shape

    Shape and Color Features for Object Recognition Search

    Get PDF
    A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future

    Object Recognition using Feature- and Color-Based Methods

    Get PDF
    An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power

    Object Recognition and Pose Estimation across Illumination Changes

    Get PDF
    In this paper, we present a new algorithm for color-based object recognition that detects objects and estimates their pose (position and orientation) in cluttered scenes observed under uncontrolled illumination conditions. As with so many other color-based object-recognition algorithms, color histograms are also fundamental to our approach; however, we use histograms obtained from overlapping subwindows, rather than the entire image. Furthermore, each local histogram is normalized using greyworld normalization in order to be as less sensitive to illumination as possible. An object from a database of prototype objects is identified and located in an input image by matching the subwindow contents. The prototype is detected in the input whenever many good histogram matches are found between the subwindows of the input image and those of the prototype. In essence, normalized color histograms of subwindows are the local features being matched. Once an object has been recognized, its 2D pose is found by approximating the geometrical transformation most consistently mapping the locations of prototype’s subwindows to their matched subwindow locations in the input image

    Color-to-Grayscale: Does the Method Matter in Image Recognition?

    Get PDF
    In image recognition it is often assumed the method used to convert color images to grayscale has little impact on recognition performance. We compare thirteen different grayscale algorithms with four types of image descriptors and demonstrate that this assumption is wrong: not all color-to-grayscale algorithms work equally well, even when using descriptors that are robust to changes in illumination. These methods are tested using a modern descriptor-based image recognition framework, on face, object, and texture datasets, with relatively few training instances. We identify a simple method that generally works best for face and object recognition, and two that work well for recognizing textures
    corecore