13,695 research outputs found

    VAN LCOS microdisplays: a decade of technological evolution

    Get PDF
    Abstract—Microdisplays of the liquid crystals on silicon (LCOS) type have gone through a rapid evolution during the last decade. We present an overview of how vertically aligned nematic (VAN) LCOS have evolved from an attractive, but notoriously difficult and even infamous technology, to the mainstream microdisplay technology that it is today. At the same time, we highlight a number of remaining issues and concerns, and present some ideas of how to remedy them

    Statistical and Dynamic Models of Charge Balance Functions

    Full text link
    Charge balance functions, which identify balancing particle-antiparticle pairs on a statistical basis, have been shown to be sensitive to whether hadronization is delayed by several fm/c in relativistic heavy ion collisions. Results from two classes of models are presented here, microscopic hadronic models and thermal models. The microscopic models give results which are contrary to recently published pi+pi- balance functions from the STAR collaboration, whereas the thermal model roughly reproduce the experimental results. This suggests that charge conservation is local at breakup, which is in line with expectations for a delayed hadronization. Predictions are also presented for balance functions binned as a function of Q_inv.Comment: 12 pages 6 figure

    Tunable Brownian Vortex at the Interface

    Get PDF
    A general kind of Brownian vortexes are demonstrated by applying an external nonconservative force field to a colloidal particle bound by a conservative optical trapping force at a liquid-air interface. As the liquid medium is translated at a constant velocity with the bead trapped at the interface, the drag force near the surface provide enough rotational component to bias the particle's thermal fluctuations in a circulatory motion. The interplay between the thermal fluctuations and the advection of the bead in constituting the vortex motions is studied, inferring that the angular velocity of the circulatory motion offers a comparative measure of the interface fluctuations.Comment: Accepted for publication in Phys. Rev.

    Nonlinear normal modes, modal interactions and isolated resonance curves

    Get PDF
    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balancing technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. The practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweep excitations of increasing amplitudes.Comment: Journal pape

    Generation of Hyperentangled Photons Pairs

    Full text link
    We experimentally demonstrate the first quantum system entangled in every degree of freedom (hyperentangled). Using pairs of photons produced in spontaneous parametric downconversion, we verify entanglement by observing a Bell-type inequality violation in each degree of freedom: polarization, spatial mode and time-energy. We also produce and characterize maximally hyperentangled states and novel states simultaneously exhibiting both quantum and classical correlations. Finally, we report the tomography of a 2x2x3x3 system (36-dimensional Hilbert space), which we believe is the first reported photonic entangled system of this size to be so characterized.Comment: 5 pages, 3 figures, 1 table, published versio

    Resonators coupled to voltage-biased Josephson junctions: From linear response to strongly driven nonlinear oscillations

    Full text link
    Motivated by recent experiments, where a voltage biased Josephson junction is placed in series with a resonator, the classical dynamics of the circuit is studied in various domains of parameter space. This problem can be mapped onto the dissipative motion of a single degree of freedom in a nonlinear time-dependent potential, where in contrast to conventional settings the nonlinearity appears in the driving while the static potential is purely harmonic. For long times the system approaches steady states which are analyzed in the underdamped regime over the full range of driving parameters including the fundamental resonance as well as higher and sub-harmonics. Observables such as the dc-Josephson current and the radiated microwave power give direct information about the underlying dynamics covering phenomena as bifurcations, irregular motion, up- and down conversion. Due to their tunability, present and future set-ups provide versatile platforms to explore the changeover from linear response to strongly nonlinear behavior in driven dissipative systems under well defined conditions.Comment: 12 pages, 11 figure
    • …
    corecore