129 research outputs found

    Unsupervised Learning from Shollow to Deep

    Get PDF
    Machine learning plays a pivotal role in most state-of-the-art systems in many application research domains. With the rising of deep learning, massive labeled data become the solution of feature learning, which enables the model to learn automatically. Unfortunately, the trained deep learning model is hard to adapt to other datasets without fine-tuning, and the applicability of machine learning methods is limited by the amount of available labeled data. Therefore, the aim of this thesis is to alleviate the limitations of supervised learning by exploring algorithms to learn good internal representations, and invariant feature hierarchies from unlabelled data. Firstly, we extend the traditional dictionary learning and sparse coding algorithms onto hierarchical image representations in a principled way. To achieve dictionary atoms capture additional information from extended receptive fields and attain improved descriptive capacity, we present a two-pass multi-resolution cascade framework for dictionary learning and sparse coding. This cascade method allows collaborative reconstructions at different resolutions using only the same dimensional dictionary atoms. The jointly learned dictionary comprises atoms that adapt to the information available at the coarsest layer, where the support of atoms reaches a maximum range, and the residual images, where the supplementary details refine progressively a reconstruction objective. Our method generates flexible and accurate representations using only a small number of coefficients, and is efficient in computation. In the following work, we propose to incorporate the traditional self-expressiveness property into deep learning to explore better representation for subspace clustering. This architecture is built upon deep auto-encoders, which non-linearly map the input data into a latent space. Our key idea is to introduce a novel self-expressive layer between the encoder and the decoder to mimic the ``self-expressiveness'' property that has proven effective in traditional subspace clustering. Being differentiable, our new self-expressive layer provides a simple but effective way to learn pairwise affinities between all data points through a standard back-propagation procedure. Being nonlinear, our neural-network based method is able to cluster data points having complex (often nonlinear) structures. However, Subspace clustering algorithms are notorious for their scalability issues because building and processing large affinity matrices are demanding. We propose two methods to tackle this problem. One method is based on kk-Subspace Clustering, where we introduce a method that simultaneously learns an embedding space along subspaces within it to minimize a notion of reconstruction error, thus addressing the problem of subspace clustering in an end-to-end learning paradigm. This in turn frees us from the need of having an affinity matrix to perform clustering. The other way starts from using a feed forward network to replace the spectral clustering and learn the affinities of each data from "self-expressive" layer. We introduce the Neural Collaborative Subspace Clustering, where it benefits from a classifier which determines whether a pair of points lies on the same subspace under supervision of "self-expressive" layer. Essential to our model is the construction of two affinity matrices, one from the classifier and the other from a notion of subspace self-expressiveness, to supervise training in a collaborative scheme. In summary, we make constributions on how to perform the unsupervised learning in several tasks in this thesis. It starts from traditional sparse coding and dictionary learning perspective in low-level vision. Then, we exploit how to incorporate unsupervised learning in convolutional neural networks without label information and make subspace clustering to large scale dataset. Furthermore, we also extend the clustering on dense prediction task (saliency detection)

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    COMPRESSIVE IMAGING AND DUAL MOIREÂŽ LASER INTERFEROMETER AS METROLOGY TOOLS

    Get PDF
    Metrology is the science of measurement and deals with measuring different physical aspects of objects. In this research the focus has been on two basic problems that metrologists encounter. The first problem is the trade-off between the range of measurement and the corresponding resolution; measurement of physical parameters of a large object or scene accompanies by losing detailed information about small regions of the object. Indeed, instruments and techniques that perform coarse measurements are different from those that make fine measurements. This problem persists in the field of surface metrology, which deals with accurate measurement and detailed analysis of surfaces. For example, laser interferometry is used for fine measurement (in nanometer scale) while to measure the form of in object, which lies in the field of coarse measurement, a different technique like moire technique is used. We introduced a new technique to combine measurement from instruments with better resolution and smaller measurement range with those with coarser resolution and larger measurement range. We first measure the form of the object with coarse measurement techniques and then make some fine measurement for features in regions of interest. The second problem is the measurement conditions that lead to difficulties in measurement. These conditions include low light condition, large range of intensity variation, hyperspectral measurement, etc. Under low light condition there is not enough light for detector to detect light from object, which results in poor measurements. Large range of intensity variation results in a measurement with some saturated regions on the camera as well as some dark regions. We use compressive sampling based imaging systems to address these problems. Single pixel compressive imaging uses a single detector instead of array of detectors and reconstructs a complete image after several measurements. In this research we examined compressive imaging for different applications including low light imaging, high dynamic range imaging and hyperspectral imaging

    Model-Based Environmental Visual Perception for Humanoid Robots

    Get PDF
    The visual perception of a robot should answer two fundamental questions: What? and Where? In order to properly and efficiently reply to these questions, it is essential to establish a bidirectional coupling between the external stimuli and the internal representations. This coupling links the physical world with the inner abstraction models by sensor transformation, recognition, matching and optimization algorithms. The objective of this PhD is to establish this sensor-model coupling

    Computational Methods for Cognitive and Cooperative Robotics

    Get PDF
    In the last decades design methods in control engineering made substantial progress in the areas of robotics and computer animation. Nowadays these methods incorporate the newest developments in machine learning and artificial intelligence. But the problems of flexible and online-adaptive combinations of motor behaviors remain challenging for human-like animations and for humanoid robotics. In this context, biologically-motivated methods for the analysis and re-synthesis of human motor programs provide new insights in and models for the anticipatory motion synthesis. This thesis presents the author’s achievements in the areas of cognitive and developmental robotics, cooperative and humanoid robotics and intelligent and machine learning methods in computer graphics. The first part of the thesis in the chapter “Goal-directed Imitation for Robots” considers imitation learning in cognitive and developmental robotics. The work presented here details the author’s progress in the development of hierarchical motion recognition and planning inspired by recent discoveries of the functions of mirror-neuron cortical circuits in primates. The overall architecture is capable of ‘learning for imitation’ and ‘learning by imitation’. The complete system includes a low-level real-time capable path planning subsystem for obstacle avoidance during arm reaching. The learning-based path planning subsystem is universal for all types of anthropomorphic robot arms, and is capable of knowledge transfer at the level of individual motor acts. Next, the problems of learning and synthesis of motor synergies, the spatial and spatio-temporal combinations of motor features in sequential multi-action behavior, and the problems of task-related action transitions are considered in the second part of the thesis “Kinematic Motion Synthesis for Computer Graphics and Robotics”. In this part, a new approach of modeling complex full-body human actions by mixtures of time-shift invariant motor primitives in presented. The online-capable full-body motion generation architecture based on dynamic movement primitives driving the time-shift invariant motor synergies was implemented as an online-reactive adaptive motion synthesis for computer graphics and robotics applications. The last chapter of the thesis entitled “Contraction Theory and Self-organized Scenarios in Computer Graphics and Robotics” is dedicated to optimal control strategies in multi-agent scenarios of large crowds of agents expressing highly nonlinear behaviors. This last part presents new mathematical tools for stability analysis and synthesis of multi-agent cooperative scenarios.In den letzten Jahrzehnten hat die Forschung in den Bereichen der Steuerung und Regelung komplexer Systeme erhebliche Fortschritte gemacht, insbesondere in den Bereichen Robotik und Computeranimation. Die Entwicklung solcher Systeme verwendet heutzutage neueste Methoden und Entwicklungen im Bereich des maschinellen Lernens und der kĂŒnstlichen Intelligenz. Die flexible und echtzeitfĂ€hige Kombination von motorischen Verhaltensweisen ist eine wesentliche Herausforderung fĂŒr die Generierung menschenĂ€hnlicher Animationen und in der humanoiden Robotik. In diesem Zusammenhang liefern biologisch motivierte Methoden zur Analyse und Resynthese menschlicher motorischer Programme neue Erkenntnisse und Modelle fĂŒr die antizipatorische Bewegungssynthese. Diese Dissertation prĂ€sentiert die Ergebnisse der Arbeiten des Autors im Gebiet der kognitiven und Entwicklungsrobotik, kooperativer und humanoider Robotersysteme sowie intelligenter und maschineller Lernmethoden in der Computergrafik. Der erste Teil der Dissertation im Kapitel “Zielgerichtete Nachahmung fĂŒr Roboter” behandelt das Imitationslernen in der kognitiven und Entwicklungsrobotik. Die vorgestellten Arbeiten beschreiben neue Methoden fĂŒr die hierarchische Bewegungserkennung und -planung, die durch Erkenntnisse zur Funktion der kortikalen Spiegelneuronen-Schaltkreise bei Primaten inspiriert wurden. Die entwickelte Architektur ist in der Lage, ‘durch Imitation zu lernen’ und ‘zu lernen zu imitieren’. Das komplette entwickelte System enthĂ€lt ein echtzeitfĂ€higes Pfadplanungssubsystem zur Hindernisvermeidung wĂ€hrend der DurchfĂŒhrung von Armbewegungen. Das lernbasierte Pfadplanungssubsystem ist universell und fĂŒr alle Arten von anthropomorphen Roboterarmen in der Lage, Wissen auf der Ebene einzelner motorischer Handlungen zu ĂŒbertragen. Im zweiten Teil der Arbeit “Kinematische Bewegungssynthese fĂŒr Computergrafik und Robotik” werden die Probleme des Lernens und der Synthese motorischer Synergien, d.h. von rĂ€umlichen und rĂ€umlich-zeitlichen Kombinationen motorischer Bewegungselemente bei Bewegungssequenzen und bei aufgabenbezogenen Handlungs ĂŒbergĂ€ngen behandelt. Es wird ein neuer Ansatz zur Modellierung komplexer menschlicher Ganzkörperaktionen durch Mischungen von zeitverschiebungsinvarianten Motorprimitiven vorgestellt. Zudem wurde ein online-fĂ€higer Synthesealgorithmus fĂŒr Ganzköperbewegungen entwickelt, der auf dynamischen Bewegungsprimitiven basiert, die wiederum auf der Basis der gelernten verschiebungsinvarianten Primitive konstruiert werden. Dieser Algorithmus wurde fĂŒr verschiedene Probleme der Bewegungssynthese fĂŒr die Computergrafik- und Roboteranwendungen implementiert. Das letzte Kapitel der Dissertation mit dem Titel “Kontraktionstheorie und selbstorganisierte Szenarien in der Computergrafik und Robotik” widmet sich optimalen Kontrollstrategien in Multi-Agenten-Szenarien, wobei die Agenten durch eine hochgradig nichtlineare Kinematik gekennzeichnet sind. Dieser letzte Teil prĂ€sentiert neue mathematische Werkzeuge fĂŒr die StabilitĂ€tsanalyse und Synthese von kooperativen Multi-Agenten-Szenarien

    Super-resolution:A comprehensive survey

    Get PDF
    • 

    corecore