203 research outputs found

    Robust Design of Transmit Waveform and Receive Filter For Colocated MIMO Radar

    Full text link
    We consider the problem of angle-robust joint transmit waveform and receive filter design for colocated Multiple-Input Multiple-Output (MIMO) radar, in the presence of signal-dependent interferences. The design problem is cast as a max-min optimization problem to maximize the worst-case output signal-to-interference-plus-noise-ratio (SINR) with respect to the unknown angle of the target of interest. Based on rank-one relaxation and semi-definite programming (SDP) representation of a nonnegative trigonometric polynomial, a cyclic optimization algorithm is proposed to tackle this problem. The effectiveness of the proposed method is illustrated via numerical examples.Comment: 6 pages, 13 figures, part of this work was submitted to IEEE Signal Processing Letters; (short introduction; typos corrected; revised statement in section III-B and IV; revised figure labels

    Fast Implementation of Transmit Beamforming for Colocated MIMO Radar

    Get PDF
    Multiple-input Multiple-output (MIMO) radars benefit from spatial and waveform diversities to improve the performance potential. Phased array radars transmit scaled versions of a single waveform thereby limiting the transmit degrees of freedom to one. However MIMO radars transmit diverse waveforms from different transmit array elements thereby increasing the degrees of freedom to form flexible transmit beampatterns. The transmit beampattern of a colocated MIMO radar depends on the zero-lag correlation matrix of different transmit waveforms. Many solutions have been developed for designing the signal correlation matrix to achieve a desired transmit beampattern based on optimization algorithms in the literature. In this paper, a fast algorithm for designing the correlation matrix of the transmit waveforms is developed that allows the next generation radars to form flexible beampatterns in real-time. An efficient method for sidelobe control with negligible increase in mainlobe width is also presented

    Efficient Transmit Beamspace Design for Search-free Based DOA Estimation in MIMO Radar

    Full text link
    In this paper, we address the problem of transmit beamspace design for multiple-input multiple-output (MIMO) radar with colocated antennas in application to direction-of-arrival (DOA) estimation. A new method for designing the transmit beamspace matrix that enables the use of search-free DOA estimation techniques at the receiver is introduced. The essence of the proposed method is to design the transmit beamspace matrix based on minimizing the difference between a desired transmit beampattern and the actual one under the constraint of uniform power distribution across the transmit array elements. The desired transmit beampattern can be of arbitrary shape and is allowed to consist of one or more spatial sectors. The number of transmit waveforms is even but otherwise arbitrary. To allow for simple search-free DOA estimation algorithms at the receive array, the rotational invariance property is established at the transmit array by imposing a specific structure on the beamspace matrix. Semi-definite relaxation is used to transform the proposed formulation into a convex problem that can be solved efficiently. We also propose a spatial-division based design (SDD) by dividing the spatial domain into several subsectors and assigning a subset of the transmit beams to each subsector. The transmit beams associated with each subsector are designed separately. Simulation results demonstrate the improvement in the DOA estimation performance offered by using the proposed joint and SDD transmit beamspace design methods as compared to the traditional MIMO radar technique.Comment: 32 pages, 10 figures, submitted to the IEEE Trans. Signal Processing in May 201

    MIMO radar with broadband waveforms: Smearing filter banks and 2D virtual arrays

    Get PDF
    In this paper MIMO radars with broadband waveforms are considered. A time domain viewpoint is taken, which allows frequency invariant beamforming with a filter bank called the smearing filter bank. Motivated by recent work on two dimensional arrays to obtain frequency invariant one dimensional beams, the generation of two dimensional virtual arrays from one dimensional ULAs is also considered. It is also argued that when the smearing filter bank is appropriately used, frequency invariant 2D beams can be generated
    corecore