561 research outputs found

    Boundary integrated neural networks (BINNs) for acoustic radiation and scattering

    Full text link
    This paper presents a novel approach called the boundary integrated neural networks (BINNs) for analyzing acoustic radiation and scattering. The method introduces fundamental solutions of the time-harmonic wave equation to encode the boundary integral equations (BIEs) within the neural networks, replacing the conventional use of the governing equation in physics-informed neural networks (PINNs). This approach offers several advantages. Firstly, the input data for the neural networks in the BINNs only require the coordinates of "boundary" collocation points, making it highly suitable for analyzing acoustic fields in unbounded domains. Secondly, the loss function of the BINNs is not a composite form, and has a fast convergence. Thirdly, the BINNs achieve comparable precision to the PINNs using fewer collocation points and hidden layers/neurons. Finally, the semi-analytic characteristic of the BIEs contributes to the higher precision of the BINNs. Numerical examples are presented to demonstrate the performance of the proposed method

    A Multidimensional Fourier Approximation of Optimal Control Surfaces

    Full text link
    This work considers the problem of approximating initial condition and time-dependent optimal control and trajectory surfaces using multivariable Fourier series. A modified Augmented Lagrangian algorithm for translating the optimal control problem into an unconstrained optimization one is proposed and two problems are solved: a quadratic control problem in the context of Newtonian mechanics, and a control problem arising from an odd-circulant game ruled by the replicator dynamics. Various computational results are presented. Use of automatic differentiation is explored to circumvent the elaborated gradient computation in the first-order optimization procedure. Furthermore, mean square error bounds are derived for the case of one and two-dimensional Fourier series approximations, inducing a general bound for problems of nn dimensions

    Finite-Rank Multivariate-Basis Expansions of the Resolvent Operator as a Means of Solving the Multivariable Lippmann-Schwinger Equation for Two-Particle Scattering

    Get PDF
    Cataloged from PDF version of article.Finite-rank expansions of the two-body resolvent operator are explored as a tool for calculating the full three-dimensional two-body T-matrix without invoking the partial-wave decomposition. The separable expansions of the full resolvent that follow from finite-rank approximations of the free resolvent are employed in the Low equation to calculate the T-matrix elements. The finite-rank expansions of the free resolvent are generated via projections onto certain finite-dimensional approximation subspaces. Types of operator approximations considered include one-sided projections (right or left projections), tensor-product (or outer) projection and inner projection. Boolean combination of projections is explored as a means of going beyond tensor-product projection. Two types of multivariate basis functions are employed to construct the finite-dimensional approximation spaces and their projectors: (i) Tensor-product bases built from univariate local piecewise polynomials, and (ii) multivariate radial functions. Various combinations of approximation schemes and expansion bases are applied to the nucleon-nucleon scattering employing a model two-nucleon potential. The inner-projection approximation to the free resolvent is found to exhibit the best convergence with respect to the basis size. Our calculations indicate that radial function bases are very promising in the context of multivariable integral equations

    Superconvergence in Iterated Solutions of Integral Equations

    Get PDF
    In this thesis, we investigate the superconvergence phenomenon of the iterated numerical solutions for the Fredholm integral equations of the second kind as well as a class of nonliner Hammerstein equations. The term superconvergence was first described in the early 70s in connection with the solution of two-point boundary value problems and other related partial differential equations. Superconvergence in this context was understood to mean that the order of convergence of the numerical solutions arising from the Galerkin as well as the collocation method is higher at the knots than we might expect from the numerical solutions that are obtained by applying a class of piecewise polynomials as approximating functions. The type of superconvergence that we investigate in this thesis is different. We are interested in finding out whether or not we obtain an enhancement in the global rate of convergence when the numerical solutions are iterated through integral operators. A general operator approximation scheme for the second kind linear equation is described that can be used to explain some of the existing superconvergence results. Moreover, a corollary to the general approximation scheme will be given which can be used to establish the superconvergence of the iterated degenerate kernel method for the Fredholm equations of the second kind. We review the iterated Galerkin method for Hammerstein equations and discuss the iterated degenerate kernel method for the Fredholm equations of the second kind. We review the iterated Galerkin method for Hammerstein equations and discuss the iterated degenerate kernel method for Hammerstein and weakly singular Hammerstein equations and its corresponding superconvergence phenomena for the iterated solutions. The type of regularities that the solution of weakly singular Hammerstein equations possess is investigated. Subsequently, we establish the singularity preserving Galerkin method for Hammerstein equations. Finally, the superconvergence results for the iterated solutions corresponding to this method will be described

    Novel Numerical Approaches for the Resolution of Direct and Inverse Heat Transfer Problems

    Get PDF
    This dissertation describes an innovative and robust global time approach which has been developed for the resolution of direct and inverse problems, specifically in the disciplines of radiation and conduction heat transfer. Direct problems are generally well-posed and readily lend themselves to standard and well-defined mathematical solution techniques. Inverse problems differ in the fact that they tend to be ill-posed in the sense of Hadamard, i.e., small perturbations in the input data can produce large variations and instabilities in the output. The stability problem is exacerbated by the use of discrete experimental data which may be subject to substantial measurement error. This tendency towards ill-posedness is the main difficulty in developing a suitable prediction algorithm for most inverse problems. Previous attempts to overcome the inherent instability have involved the utilization of smoothing techniques such as Tikhonov regularization and sequential function estimation (Beck’s future information method). As alternatives to the existing methodologies, two novel mathematical schemes are proposed. They are the Global Time Method (GTM) and the Function Decomposition Method (FDM). Both schemes are capable of rendering time and space in a global fashion thus resolving the temporal and spatial domains simultaneously. This process effectively treats time elliptically or as a fourth spatial dimension. AWeighted Residuals Method (WRM) is utilized in the mathematical formulation wherein the unknown function is approximated in terms of a finite series expansion. Regularization of the solution is achieved by retention of expansion terms as opposed to smoothing in the classical Tikhonov sense. In order to demonstrate the merit and flexibility of these approaches, the GTM and FDM have been applied to representative problems of direct and inverse heat transfer. Those chosen are a direct problem of radiative transport, a parameter estimation problem found in Differential Scanning Calorimetry (DSC) and an inverse heat conduction problem (IHCP). The IHCP is resolved for the cases of diagnostic deduction (discrete temperature data at the boundary) and thermal design (prescribed functional data at the boundary). Both methods are shown to provide excellent results for the conditions under which they were tested. Finally, a number of suggestions for future work are offered

    Summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    Get PDF
    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized

    An analytical connection between temporal and spatio-temporal growth rates in linear stability analysis

    Full text link
    We derive an exact formula for the complex frequency in spatio-temporal stability analysis that is valid for arbitrary complex wave numbers. The usefulness of the formula lies in the fact that it depends only on purely temporal quantities, which are easily calculated. We apply the formula to two model dispersion relations: the linearized complex Ginzburg--Landau equation, and a model of wake instability. In the first case, a quadratic truncation of the exact formula applies; in the second, the same quadratic truncation yields an estimate of the parameter values at which the transition to absolute instability occurs; the error in the estimate decreases upon increasing the order of the truncation. We outline ways in which the formula can be used to characterize stability results obtained from purely numerical calculations, and point to a further application in global stability analyses.Comment: 36 pages, 16 figures; Article has been tweaked and reduced in size but essential features remain the same; Supplementary material (16 pages) is also include

    A novel design of fractional Mayer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems

    Get PDF
    In this study, a novel stochastic computational frameworks based on fractional Meyer wavelet artificial neural network (FMW-ANN) is designed for nonlinear-singular fractional Lane-Emden (NS-FLE) differential equation. The modeling strength of FMW-ANN is used to transformed the differential NS-FLE system to difference equations and approximate theory is implemented in mean squared error sense to develop a merit function for NS-FLE differential equations. Meta-heuristic strength of hybrid computing by exploiting global search efficacy of genetic algorithms (GA) supported with local refinements with efficient active-set (AS) algorithm is used for optimization of design variables FMW-ANN., i.e., FMW-ANN-GASA. The proposed FMW-ANN-GASA methodology is implemented on NS-FLM for six different scenarios in order to exam the accuracy, convergence, stability and robustness. The proposed numerical results of FMW-ANN-GASA are compared with exact solutions to verify the correctness, viability and efficacy. The statistical observations further validate the worth of FMW-ANN-GASA for the solution of singular nonlinear fractional order systems.This paper is partially supported by Ministerio de Ciencia, Innovación y Universidades grant number PGC2018-097198-BI00 and Fundación Séneca de la Región de Murcia grant number 20783/PI/18
    • …
    corecore