119 research outputs found

    Collocation analysis for UMLS knowledge-based word sense disambiguation

    Get PDF
    BACKGROUND: The effectiveness of knowledge-based word sense disambiguation (WSD) approaches depends in part on the information available in the reference knowledge resource. Off the shelf, these resources are not optimized for WSD and might lack terms to model the context properly. In addition, they might include noisy terms which contribute to false positives in the disambiguation results. METHODS: We analyzed some collocation types which could improve the performance of knowledge-based disambiguation methods. Collocations are obtained by extracting candidate collocations from MEDLINE and then assigning them to one of the senses of an ambiguous word. We performed this assignment either using semantic group profiles or a knowledge-based disambiguation method. In addition to collocations, we used second-order features from a previously implemented approach.Specifically, we measured the effect of these collocations in two knowledge-based WSD methods. The first method, AEC, uses the knowledge from the UMLS to collect examples from MEDLINE which are used to train a Naïve Bayes approach. The second method, MRD, builds a profile for each candidate sense based on the UMLS and compares the profile to the context of the ambiguous word.We have used two WSD test sets which contain disambiguation cases which are mapped to UMLS concepts. The first one, the NLM WSD set, was developed manually by several domain experts and contains words with high frequency occurrence in MEDLINE. The second one, the MSH WSD set, was developed automatically using the MeSH indexing in MEDLINE. It contains a larger set of words and covers a larger number of UMLS semantic types. RESULTS: The results indicate an improvement after the use of collocations, although the approaches have different performance depending on the data set. In the NLM WSD set, the improvement is larger for the MRD disambiguation method using second-order features. Assignment of collocations to a candidate sense based on UMLS semantic group profiles is more effective in the AEC method.In the MSH WSD set, the increment in performance is modest for all the methods. Collocations combined with the MRD disambiguation method have the best performance. The MRD disambiguation method and second-order features provide an insignificant change in performance. The AEC disambiguation method gives a modest improvement in performance. Assignment of collocations to a candidate sense based on knowledge-based methods has better performance. CONCLUSIONS: Collocations improve the performance of knowledge-based disambiguation methods, although results vary depending on the test set and method used. Generally, the AEC method is sensitive to query drift. Using AEC, just a few selected terms provide a large improvement in disambiguation performance. The MRD method handles noisy terms better but requires a larger set of terms to improve performance

    Biomedical word sense disambiguation with ontologies and metadata: automation meets accuracy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ontology term labels can be ambiguous and have multiple senses. While this is no problem for human annotators, it is a challenge to automated methods, which identify ontology terms in text. Classical approaches to word sense disambiguation use co-occurring words or terms. However, most treat ontologies as simple terminologies, without making use of the ontology structure or the semantic similarity between terms. Another useful source of information for disambiguation are metadata. Here, we systematically compare three approaches to word sense disambiguation, which use ontologies and metadata, respectively.</p> <p>Results</p> <p>The 'Closest Sense' method assumes that the ontology defines multiple senses of the term. It computes the shortest path of co-occurring terms in the document to one of these senses. The 'Term Cooc' method defines a log-odds ratio for co-occurring terms including co-occurrences inferred from the ontology structure. The 'MetaData' approach trains a classifier on metadata. It does not require any ontology, but requires training data, which the other methods do not. To evaluate these approaches we defined a manually curated training corpus of 2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all conditions achieve 80% success rate on average. The 'MetaData' approach performed best with 96%, when trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The 'Term Cooc' approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The 'Closest Sense' approach achieves on average 80% success rate.</p> <p>Conclusion</p> <p>Metadata is valuable for disambiguation, but requires high quality training data. Closest Sense requires no training, but a large, consistently modelled ontology, which are two opposing conditions. Term Cooc achieves greater 90% success given a consistently modelled ontology. Overall, the results show that well structured ontologies can play a very important role to improve disambiguation.</p> <p>Availability</p> <p>The three benchmark datasets created for the purpose of disambiguation are available in Additional file <supplr sid="S1">1</supplr>.</p> <suppl id="S1"> <title> <p>Additional file 1</p> </title> <text> <p><b>Benchmark datasets used in the experiments.</b> The three corpora (High quality/Low quantity corpus; Medium quality/Medium quantity corpus; Low quality/High quantity corpus) are given in the form of PubMed identifiers (PMID) for True/False cases for the 7 ambiguous terms examined (GO/MeSH/UMLS identifiers are also given).</p> </text> <file name="1471-2105-10-28-S1.txt"> <p>Click here for file</p> </file> </suppl

    Negation detection and word sense disambiguation in digital archaeology reports for the purposes of semantic annotation

    Get PDF
    The paper presents the role and contribution of Natural Language Processing Techniques, in particular Negation Detection and Word Sense Disambiguation in the process of Semantic Annotation of Archaeological Grey Literature. Archaeological reports contain a great deal of information that conveys facts and findings in different ways. This kind of information is highly relevant to the research and analysis of archaeological evidence but at the same time can be a hindrance for the accurate indexing of documents with respect to positive assertion

    A new clustering method for detecting rare senses of abbreviations in clinical notes

    Get PDF
    AbstractAbbreviations are widely used in clinical documents and they are often ambiguous. Building a list of possible senses (also called sense inventory) for each ambiguous abbreviation is the first step to automatically identify correct meanings of abbreviations in given contexts. Clustering based methods have been used to detect senses of abbreviations from a clinical corpus [1]. However, rare senses remain challenging and existing algorithms are not good enough to detect them. In this study, we developed a new two-phase clustering algorithm called Tight Clustering for Rare Senses (TCRS) and applied it to sense generation of abbreviations in clinical text. Using manually annotated sense inventories from a set of 13 ambiguous clinical abbreviations, we evaluated and compared TCRS with the existing Expectation Maximization (EM) clustering algorithm for sense generation, at two different levels of annotation cost (10 vs. 20 instances for each abbreviation). Our results showed that the TCRS-based method could detect 85% senses on average; while the EM-based method found only 75% senses, when similar annotation effort (about 20 instances) was used. Further analysis demonstrated that the improvement by the TCRS method was mainly from additionally detected rare senses, thus indicating its usefulness for building more complete sense inventories of clinical abbreviations

    Doctor of Philosophy

    Get PDF
    dissertationDomain adaptation of natural language processing systems is challenging because it requires human expertise. While manual e ort is e ective in creating a high quality knowledge base, it is expensive and time consuming. Clinical text adds another layer of complexity to the task due to privacy and con dentiality restrictions that hinder the ability to share training corpora among di erent research groups. Semantic ambiguity is a major barrier for e ective and accurate concept recognition by natural language processing systems. In my research I propose an automated domain adaptation method that utilizes sublanguage semantic schema for all-word word sense disambiguation of clinical narrative. According to the sublanguage theory developed by Zellig Harris, domain-speci c language is characterized by a relatively small set of semantic classes that combine into a small number of sentence types. Previous research relied on manual analysis to create language models that could be used for more e ective natural language processing. Building on previous semantic type disambiguation research, I propose a method of resolving semantic ambiguity utilizing automatically acquired semantic type disambiguation rules applied on clinical text ambiguously mapped to a standard set of concepts. This research aims to provide an automatic method to acquire Sublanguage Semantic Schema (S3) and apply this model to disambiguate terms that map to more than one concept with di erent semantic types. The research is conducted using unmodi ed MetaMap version 2009, a concept recognition system provided by the National Library of Medicine, applied on a large set of clinical text. The project includes creating and comparing models, which are based on unambiguous concept mappings found in seventeen clinical note types. The e ectiveness of the nal application was validated through a manual review of a subset of processed clinical notes using recall, precision and F-score metrics

    Ontologies and Information Extraction

    Full text link
    This report argues that, even in the simplest cases, IE is an ontology-driven process. It is not a mere text filtering method based on simple pattern matching and keywords, because the extracted pieces of texts are interpreted with respect to a predefined partial domain model. This report shows that depending on the nature and the depth of the interpretation to be done for extracting the information, more or less knowledge must be involved. This report is mainly illustrated in biology, a domain in which there are critical needs for content-based exploration of the scientific literature and which becomes a major application domain for IE
    corecore