128 research outputs found

    The interaction of knowledge sources in word sense disambiguation

    Get PDF
    Word sense disambiguation (WSD) is a computational linguistics task likely to benefit from the tradition of combining different knowledge sources in artificial in telligence research. An important step in the exploration of this hypothesis is to determine which linguistic knowledge sources are most useful and whether their combination leads to improved results. We present a sense tagger which uses several knowledge sources. Tested accuracy exceeds 94% on our evaluation corpus.Our system attempts to disambiguate all content words in running text rather than limiting itself to treating a restricted vocabulary of words. It is argued that this approach is more likely to assist the creation of practical systems

    Supervised and unsupervised methods for learning representations of linguistic units

    Get PDF
    Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”.Wortrepräsentationen, sogenannte Word Embeddings, sind generische Repräsentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nächsten Nachbarn. Viele Probleme der Computerlinguistik können durch Wortrepräsentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den Wortrepräsentationen enthalten sind. In der ersten Publikation untersuchen wir überwachte, graphenbasierte Methodenn um Wortrepräsentationen zu erzeugen. Diese Methoden führen zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, für welches zwei äquivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne Knotenähnlichkeiten effektiv berechnen, da graphenbasierte Wortrepräsentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende Wortrepräsentationen und kombinieren diese mit semantischen Ressourcen, indem wir Repräsentationen für Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und Entitäten. Die Flexibilität unserer Methode zeichnet sich dadurch aus, dass wir beliebige Wortrepräsentationen als Eingabe verwenden können und keinen zusätzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der Wortrepräsentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten Repräsentationen zur Erstellung von Wörterbüchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und Häufigkeit. Die letzte Publikation präsentiert eine neue Rechenmethode für die interpretierbaren ultra-kompakten Untervektorräume -- Stimmung, Konkretheit, Häufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort für Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”

    Automatic generation of labelled data for word sense disambiguation

    Get PDF
    Master'sMASTER OF SCIENC

    Supervised and unsupervised methods for learning representations of linguistic units

    Get PDF
    Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”.Wortrepräsentationen, sogenannte Word Embeddings, sind generische Repräsentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nächsten Nachbarn. Viele Probleme der Computerlinguistik können durch Wortrepräsentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den Wortrepräsentationen enthalten sind. In der ersten Publikation untersuchen wir überwachte, graphenbasierte Methodenn um Wortrepräsentationen zu erzeugen. Diese Methoden führen zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, für welches zwei äquivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne Knotenähnlichkeiten effektiv berechnen, da graphenbasierte Wortrepräsentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende Wortrepräsentationen und kombinieren diese mit semantischen Ressourcen, indem wir Repräsentationen für Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und Entitäten. Die Flexibilität unserer Methode zeichnet sich dadurch aus, dass wir beliebige Wortrepräsentationen als Eingabe verwenden können und keinen zusätzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der Wortrepräsentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten Repräsentationen zur Erstellung von Wörterbüchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und Häufigkeit. Die letzte Publikation präsentiert eine neue Rechenmethode für die interpretierbaren ultra-kompakten Untervektorräume -- Stimmung, Konkretheit, Häufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort für Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”

    ParaSense: parallel corpora for word sense disambiguation

    Get PDF

    Application of generic sense classes in word sense disambiguation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen
    corecore