1,021 research outputs found

    Basic Understanding of Condensed Phases of Matter via Packing Models

    Full text link
    Packing problems have been a source of fascination for millenia and their study has produced a rich literature that spans numerous disciplines. Investigations of hard-particle packing models have provided basic insights into the structure and bulk properties of condensed phases of matter, including low-temperature states (e.g., molecular and colloidal liquids, crystals and glasses), multiphase heterogeneous media, granular media, and biological systems. The densest packings are of great interest in pure mathematics, including discrete geometry and number theory. This perspective reviews pertinent theoretical and computational literature concerning the equilibrium, metastable and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the case of jammed packings, emphasis will be placed on the "geometric-structure" approach, which provides a powerful and unified means to quantitatively characterize individual packings via jamming categories and "order" maps. It incorporates extremal jammed states, including the densest packings, maximally random jammed states, and lowest-density jammed structures. Packings of identical spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this review by identifying challenges and open questions for future research.Comment: 33 pages, 20 figures, Invited "Perspective" submitted to the Journal of Chemical Physics. arXiv admin note: text overlap with arXiv:1008.298

    Publications of the Jet Propulsion Laboratory July 1965 through July 1966

    Get PDF
    Bibliography on Jet Propulsion Laboratory technical reports and memorandums, space programs summary, astronautics information, and literature searche

    Computational Approaches to Simulation and Analysis of Large Conformational Transitions in Proteins

    Get PDF
    abstract: In a typical living cell, millions to billions of proteins—nanomachines that fluctuate and cycle among many conformational states—convert available free energy into mechanochemical work. A fundamental goal of biophysics is to ascertain how 3D protein structures encode specific functions, such as catalyzing chemical reactions or transporting nutrients into a cell. Protein dynamics span femtosecond timescales (i.e., covalent bond oscillations) to large conformational transition timescales in, and beyond, the millisecond regime (e.g., glucose transport across a phospholipid bilayer). Actual transition events are fast but rare, occurring orders of magnitude faster than typical metastable equilibrium waiting times. Equilibrium molecular dynamics (EqMD) can capture atomistic detail and solute-solvent interactions, but even microseconds of sampling attainable nowadays still falls orders of magnitude short of transition timescales, especially for large systems, rendering observations of such "rare events" difficult or effectively impossible. Advanced path-sampling methods exploit reduced physical models or biasing to produce plausible transitions while balancing accuracy and efficiency, but quantifying their accuracy relative to other numerical and experimental data has been challenging. Indeed, new horizons in elucidating protein function necessitate that present methodologies be revised to more seamlessly and quantitatively integrate a spectrum of methods, both numerical and experimental. In this dissertation, experimental and computational methods are put into perspective using the enzyme adenylate kinase (AdK) as an illustrative example. We introduce Path Similarity Analysis (PSA)—an integrative computational framework developed to quantify transition path similarity. PSA not only reliably distinguished AdK transitions by the originating method, but also traced pathway differences between two methods back to charge-charge interactions (neglected by the stereochemical model, but not the all-atom force field) in several conserved salt bridges. Cryo-electron microscopy maps of the transporter Bor1p are directly incorporated into EqMD simulations using MD flexible fitting to produce viable structural models and infer a plausible transport mechanism. Conforming to the theme of integration, a short compendium of an exploratory project—developing a hybrid atomistic-continuum method—is presented, including initial results and a novel fluctuating hydrodynamics model and corresponding numerical code.Dissertation/ThesisDoctoral Dissertation Physics 201

    (Dis)assembly path planning for complex objects and applications to structural biology

    Get PDF
    Understanding and predicting structure-function relationships in proteins with fully in silico approaches remain today a great challenge. Despite recent developments of computational methods for studying molecular motions and interactions, dealing with macromolecular flexibility largely remains out of reach of the existing molecular modeling tools. The aim of this thesis is to develop a novel approach based on motion planning algorithms originating from robotics to better deal with macromolecular flexibility in protein interaction studies. We have extended a recent sampling-based algorithm, ML-RRT, for (dis)-assembly path planning of complex articulated objects. This algorithm is based on a partition of the configuration parameters into active and passive subsets, which are then treated in a decoupled manner. The presented extensions permit to consider different levels of mobility for the passive parts that can be pushed or pulled by the motion of active parts. This algorithmic tool is successfully applied to study protein conformational changes induced by the diffusion of a ligand inside it. Building on the extension of ML-RRT, we have developed a novel method for simultaneously (dis)assembly sequencing and path planning. The new method, called Iterative-ML-RRT, computes not only the paths for extracting all the parts from a complex assembled object, but also the preferred order that the disassembly process has to follow. We have applied this general approach for studying disassembly pathways of macromolecular complexes considering a scoring function based on the interaction energy. The results described in this thesis prove not only the efficacy but also the generality of the proposed algorithm

    Algorithmes pour le (dés)assemblage d'objets complexes et applications à la biologie structurale

    Get PDF
    La compréhension et la prédiction des relations structure-fonction de protéines par des approches in sillico représentent aujourd'hui un challenge. Malgré le développement récent de méthodes algorithmiques pour l'étude du mouvement et des interactions moléculaires, la flexibilité de macromolécules reste largement hors de portée des outils actuels de modélisation moléculaire. L'objectif de cette thèse est de développer une nouvelle approche basée sur des algorithmes de planification de mouvement issus de la robotique pour mieux traiter la flexibilité moléculaire dans l'étude des interactions protéiques. Nous avons étendu un algorithme récent d'exploration par échantillonnage aléatoire, ML-RRT pour le désassemblage d'objets articulés complexes. Cet algorithme repose sur la décomposition des paramètres de configuration en deux sous-ensembles actifs et passifs, qui sont traités de manière découplée. Les extensions proposées permettent de considérer plusieurs degrés de mobilité pour la partie passive, qui peut être poussée ou attirée par la partie active. Cet outil algorithmique a été appliqué avec succès pour l'étude des changements conformationnels de protéines induits lors de la diffusion d'un ligand. A partir de cette extension, nous avons développé une nouvelle méthode pour la résolution simultanée du séquençage et des mouvements de désassemblage entre plusieurs objets. La méthode, nommée Iterative-ML-RRT, calcule non seulement les trajectoires permettant d'extraire toutes les pièces d'un objet complexe assemblé, mais également l'ordre permettant le désassemblage. L'approche est générale et a été appliquée pour l'étude du processus de dissociation de complexes macromoléculaires en introduisant une fonction d'évaluation basée sur l'énergie d'interaction. Les résultats présentés dans cette thèse montrent non seulement l'efficacité mais aussi la généralité des algorithmes proposés. ABSTRACT : Understanding and predicting structure-function relationships in proteins with fully in silico approaches remain today a great challenge. Despite recent developments of computational methods for studying molecular motions and interactions, dealing with macromolecular flexibility largely remains out of reach of the existing molecular modeling tools. The aim of this thesis is to develop a novel approach based on motion planning algorithms originating from robotics to better deal with macromolecular flexibility in protein interaction studies. We have extended a recent sampling-based algorithm, ML-RRT, for (dis)-assembly path planning of complex articulated objects. This algorithm is based on a partition of the configuration parameters into active and passive subsets, which are then treated in a decoupled manner. The presented extensions permit to consider different levels of mobility for the passive parts that can be pushed or pulled by the motion of active parts. This algorithmic tool is successfully applied to study protein conformational changes induced by the diffusion of a ligand inside it. Building on the extension of ML-RRT, we have developed a novel method for simultaneously (dis)assembly sequencing and path planning. The new method, called Iterative-ML-RRT, computes not only the paths for extracting all the parts from a complex assembled object, but also the preferred order that the disassembly process has to follow. We have applied this general approach for studying disassembly pathways of macromolecular complexes considering a scoring function based on the interaction energy. The results described in this thesis prove not only the efficacy but also the generality of the proposed algorithm

    The Effect of Processing Parameters on Barrier Properties of Polymers

    Get PDF
    The intent of this work was to learn if polyethylene could be made with predictable water transfer rates by control of the microstructure. A series of films were formed from three different polyethylenes with a range crystallinities using melt pressing, a controlled cooling rate, and subsequent heat treatments. The samples were tested on a novel device called the polymer characterization device that measures the water transfer flux as a function of temperature. The samples’ morphology was examined using differential gradient column, differential scanning calorimetry, Fourier transform infrared microscopy, wide-angle X-ray diffractions, small-angle X-ray scattering, and small angle light scattering, and scanning electron microscopy. When the water transfer flux was expressed as the frost point of a dry carrier gas the results showed a remarkable sensitivity that allows for analysis of subtle distinction in rates due to changes in morphology. Analysis showed that the water transfer flux is a function of the polymer, conditions of the samples preparation from the melt, and any subsequent heat treatment. Another interesting finding was that the time for the sample to reach a steady state water transfer flux is a function of morphology. A free volume model was developed to that simulates the response of the polymer as a function of morphology, presence of water, and thermal cycling. The conclusion of this work is that the water transfer flux is a function of the specific polymer, the initial formation conditions, and later heat treatments and with this knowledge the polymer could be made with a specific water transfer flux
    • …
    corecore