9 research outputs found

    Void Avoiding Opportunistic Routing Protocols for Underwater Wireless Sensor Networks: A Survey

    Get PDF
    One of the most challenging issues in the routing protocols for underwater wireless sensor networks (UWSNs) is the occurrence of void areas (communication void). That is, when void areas are present, the data packets could be trapped in a sensor node and cannot be sent further to reach the sink(s) due to the features of the UWSNs environment and/or the configuration of the network itself. Opportunistic routing (OR) is an innovative prototype in routing for UWSNs. In routing protocols employing the OR technique, the most suitable sensor node according to the criteria adopted by the protocol rules will be elected as a next-hop forwarder node to forward the data packets first. This routing method takes advantage of the broadcast nature of wireless sensor networks. OR has made a noticeable improvement in the sensor networks’ performance in terms of efficiency, throughput, and reliability. Several routing protocols that utilize OR in UWSNs have been proposed to extend the lifetime of the network and maintain its connectivity by addressing void areas. In addition, a number of survey papers were presented in routing protocols with different points of approach. Our paper focuses on reviewing void avoiding OR protocols. In this paper, we briefly present the basic concept of OR and its building blocks. We also indicate the concept of the void area and list the reasons that could lead to its occurrence, as well as reviewing the state-of-the-art OR protocols proposed for this challenging area and presenting their strengths and weaknesses

    Void Avoidance Opportunistic Routing Protocol for Underwater Wireless Sensor Networks

    Get PDF
    Much attention has been focused lately on the Opportunistic Routing technique (OR) that can overcome the restrictions of the harsh underwater environment and the unique structures of the Underwater Sensor Networks (UWSNs). OR enhances the performance of the UWSNs in both packet delivery ratio and energy saving. In our work; we propose a new routing protocol; called Energy Efficient Depth-based Opportunistic Routing with Void Avoidance for UWSNs (EEDOR-VA), to address the void area problem. EEDOR-VA is a reactive OR protocol that uses a hop count discovery procedure to update the hop count of the intermediate nodes between the source and the destination to form forwarding sets. EEDOR-VA forwarding sets can be selected with less or greater depth than the packet holder (i.e., source or intermediate node). It efficiently prevents all void/trapped nodes from being part of the forwarding sets and data transmission procedure; thereby saving network resources and delivering data packets at the lowest possible cost. The results of our extensive simulation study indicate that the EEDOR-VA protocol outperforms other protocols in terms of packet delivery ratio and energy consumption

    Networks, Communication, and Computing Vol. 2

    Get PDF
    Networks, communications, and computing have become ubiquitous and inseparable parts of everyday life. This book is based on a Special Issue of the Algorithms journal, and it is devoted to the exploration of the many-faceted relationship of networks, communications, and computing. The included papers explore the current state-of-the-art research in these areas, with a particular interest in the interactions among the fields

    Medium access control, error control and routing in underwater acoustic networks: a discussion on protocol design and implementation

    Get PDF
    The journey of underwater communication which began from Leonardo’s era took four and a half centuries to find practical applications for military purposes during World War II. However, over the last three decades, underwater acoustic communications witnessed a massive development due to the advancements in the design of underwater communicating peripherals and their supporting protocols. Successively, doors are opened for a wide range of applications to employ in the underwater environment, such as oceanography, pollution monitoring, offshore exploration, disaster prevention, navigation assistance, monitoring, coastal patrol and surveillance. Different applications may have different characteristics and hence, may require different network architectures. For instance, routing protocols designed for unpartitioned multi-hop networks are not suitable for Delay-Tolerant Networks. Furthermore, single-hop networks do not need routing protocols at all. Therefore, before developing a protocol one must study the network architecture properly and design it accordingly. There are several other factors which should also be considered with the network architecture while designing an efficient protocol for underwater networks, such as long propagation delay, limited bandwidth, limited battery power, high bit error rate of the channel and several other adverse properties of the channel, such as, multi-path, fading and refractive behaviors. Moreover, the environment also has an impact on the performance of the protocols designed for underwater networks. Even temperature changes in a single day have an impact on the performance of the protocols. A good protocol designed for any network should consider some or all of these characteristics to achieve better performance. In this thesis, we first discuss the impact of the environment on the performance of MAC and routing protocols. From our investigation, we discover that even temperature changes within a day may affect the sound speed profile and hence, the channel changes and the protocol performance vary. After that we discuss several protocols which are specifically designed for underwater acoustic networks to serve different purposes and for different network architectures. Underwater Selective Repeat (USR) is an error control protocol designed to assure reliable data transmission in the MAC layer. One may suspect that employing an error control technique over a channel which already suffers from long propagation delays is a burden. However, USR utilizes long propagation by transmitting multiple packets in a single RTT using an interlacing technique. After USR, a routing protocol for surveillance networks is discussed where some sensors are laid down at the bottom of the sea and some sinks are placed outside the area. If a sensor detects an asset within its detection range, it announces the presence of intruders by transmitting packets to the sinks. It may happen that the discovered asset is an enemy ship or an enemy submarine which creates noise to jam the network. Therefore, in surveillance networks, it is necessary that the protocols have jamming resistance capabilities. Moreover, since the network supports multiple sinks with similar anycast address, we propose a Jamming Resistance multi-path Multi-Sink Routing Protocol (MSRP) using a source routing technique. However, the problem of source routing is that it suffers from large overhead (every packet includes the whole path information) with respect to other routing techniques, and also suffers from the unidirectional link problem. Therefore, another routing protocol based on a distance vector technique, called Multi-path Routing with Limited Cross-Path Interference (L-CROP) protocol is proposed, which employs a neighbor-aware multi-path discovery algorithm to support low interference multiple paths between each source-destination pair. Following that, another routing protocol is discussed for next generation coastal patrol and surveillance network, called Underwater Delay-Tolerant Network (UDTN) routing where some AUVs carry out the patrolling work of a given area and report to a shore based control-center. Since the area to be patrolled is large, AUVs experience intermittent connectivity. In our proposed protocol, two nodes that understand to be in contact with each other calculate and divide their contact duration equally so that every node gets a fair share of the contact duration to exchange data. Moreover, a probabilistic spray technique is employed to restrict the number of packet transmissions and for error correction a modified version of USR is employed. In the appendix, we discuss a framework which was designed by our research group to realize underwater communication through simulation which is used in most of the simulations in this thesis, called DESERT Underwater (short for DEsign, Simulate, Emulate and Realize Test-beds for Underwater network protocols). It is an underwater extension of the NS-Miracle simulator to support the design and implementation of underwater network protocols. Its creation assists the researchers in to utilizing the same codes designed for the simulator to employ in actual hardware devices and test in the real underwater scenario

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Design, analysis and implementation of a spatial-temporal, adaptive and multi-replication data centric storage framework for wireless sensor and actor networks

    Get PDF
    This PhD Thesis presents a novel framework for Data-Centric Storage(DCS) in a Wireless Sensor and Actor Network(WSAN) that enables the use of a multiple set of data replication nodes, which also change over the time. This allows reducing the average network traffic and energy consumption by adapting the number of replicas to applications’ traffic, while balancing energy burdens by varying their location. To that end we propose and validate a simple model to determine the optimal number of replicas, in terms of minimizing average traffic/energy consumption, from the measured applications’ production and consumption traffic. Simple mechanisms are proposed to decide when the current set of replication nodes should be changed, to enable new applications and sensor nodes to efficiently bootstrap into a working sensor network, to recover from failing nodes, and to adapt to changing conditions. Extensive simulations demonstrate that our approach can extend a sensor network’s lifetime by at least a 60%, and up to a factor of 10x depending on the lifetime criterion being considered. Furthermore, we have implemented our framework in a real testbed with 20 motes that validates in a small scenario those results obtained via simulation for large WSANs. Finally, we present a heuristic that adapts our framework to scenarios with spatially heterogeneous consumption and/or production traffic distributions providing an effective reduction in the overall traffic, as well as reducing the number of nodes that die over the time. --------------------------------------------------------------------------------------------------------------------------------------------Esta Tesis se enmarca en el campo de la redes de sensores y actuadores inalámbricas. Para este tipo de redes existe un sistema de almacenamiento y entrega de información totalmente distribuido denominado Data-Centric Storage (DCS). En dicho sistema se selecciona un nodo en la red para almacenar toda la información relativa a una aplicación o tipo de evento. Dicha elección se realiza mediante el uso de una función de hash que, usando como argumento el propio nombre de la aplicación (o tipo de evento), devuelve el identificador (e.g. coordenadas geográficas, identificador de nodo, etc) del nodo responsable de almacenar toda la información que deesa aplicación (o tipo de evento). El uso de un único nodo para almacenar todos los datos de un mismo tipo generados en la red tiende a generar un punto de saturación en la red (especialmente en términos energéticos) ya que una gran cantidad de tráfico es encaminada hacia un único punto. De hecho, no sólo el nodo seleccionado como nodo de almacenamiento, sino también todos aquellos que le rodean, experimentan un mayor gasto de recursos ya que son los encargados de rutar los mensajes hacia el nodo de almacenamiento. Este problema ha dado lugar a sistemas que utilizan multiples réplicas para aliviar la generacióon de un punto de congestión y elevado consumo energético en la red. Situando varios puntos de almacenamiento para un tipo de evento dado, es posible aliviar la congestión de un único punto. Sin embargo la generación de nuevas réplicas tiene un coste asociado, y por tanto existe un número de réplicas óptimo que minimiza el tráfico total en la red, que a su vez tiene un impacto directo en la reducción del consumo energético y la extensión del tiempo de vida de la red. En esta Tesis se proponen dos esquemas de replicación para redes de sensores que usan DCS como sistema de almacenamiento distribuido. Para ambos casos se han desarrollado modelos matemáticos que permiten conocer el número óptimo de réplicas que deben ser utilizadas (para minimizar el tráfico total en la red) en función de la intensidad de producción y consumo de un tipo de evento. El primer mecanismo, denominado Quadratic Adaptive Replication (QAR), propone el uso de una estructura mallada para la colocación de las réplicas. QAR mejora trabajos previos que ya proponían un esquema de replicación en grid, ya que es más adaptativo a las condiciones de tráfico en la red. El segundo mecanismo simplemente genera localizaciones aleatorias donde situar las replicas. Sorprendentemente, esta Tesis demuestra que es el mejor sistema de replicación, incluso por delante de QAR, ya que es el más adaptativo a las condiciones de tráfico. Además, tiene la gran ventaja de que es extremadamente simple y puede aplicarse en redes irregulares o que utlizan diferentes protocolos de enrutamiento. Los sistemas de replicación alivian el problema del punto único de congestión, pero no lo solucionan completamente, ya que siguen apareciendo puntos de congestión menores, tantos como réplicas sean usadas. Por tanto, la red sigue presentando una gran desigualdad en el consumo energético, ya que aquellos puntos seleccionados como réplicas (y sus vecinos) usan una mayor energía para desarrollar su actividad. Frente a este problema, se propone como solución el cambio de las réplicas a lo largo del tiempo. Esecialmente, se limita el tiempo que un nodo puede permanecer desempeñando el papel de réplica, de tal forma que, una vez pasado ese tiempo, otro nodo tomará esa responsabilidad. Aplicando esta propuesta se consigue un equilibrio en el consumo energético de los nodos de la red, lo que tiene un gran impacto en la extensión del tiempo de vida de la red. En los experimentos realizados, dicha extensión tiene un valor m´ınimo de un 60%, llegándose a extender el tiempo de la vida hasta 10 veces bajo ciertas definiciones de tiempo de vida de la red. La principal contribución de esta Tesis es la presentación de un marco de trabajo adaptativo tanto espacial como temporalmente que, basado en un modelo teórico, indica cuál es el número óptimo de replicas que deben ser usadas en un determinado periodo. En esta Tesis se propone un protocolo completo que cubre todas las funcionalidades para que dicho sistema pueda ser implementado y desplegado en el mundo real. Para demostrar que el sistema propuesto puede ser implementado en ndoos de sensores comerciales, esta Tesis presenta la implementación realizada en 20 motas del fabricante Jennic. Asimismo, se ha empleado un pequeño test de pruebas para confirmar la validez de los modelos matemáticos para la obtención del número óptimo de réplicas, así como para demostrar que el cambio de las réplicas a lo largo del tiempo genera una mejor distribución del consumo energético en la red

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks
    corecore