12,643 research outputs found

    General relativistic neutrino transport using spectral methods

    Full text link
    We present a new code, Lorene's Ghost (for Lorene's gravitational handling of spectral transport) developed to treat the problem of neutrino transport in supernovae with the use of spectral methods. First, we derive the expression for the nonrelativistic Liouville operator in doubly spherical coordinates (r, theta, phi, epsilon, Theta, Phi)$, and further its general relativistic counterpart. We use the 3 + 1 formalism with the conformally flat approximation for the spatial metric, to express the Liouville operator in the Eulerian frame. Our formulation does not use any approximations when dealing with the angular arguments (theta, phi, Theta, Phi), and is fully energy-dependent. This approach is implemented in a spherical shell, using either Chebyshev polynomials or Fourier series as decomposition bases. It is here restricted to simplified collision terms (isoenergetic scattering) and to the case of a static fluid. We finish this paper by presenting test results using basic configurations, including general relativistic ones in the Schwarzschild metric, in order to demonstrate the convergence properties, the conservation of particle number and correct treatment of some general-relativistic effects of our code. The use of spectral methods enables to run our test cases in a six-dimensional setting on a single processor.Comment: match published versio

    Symmetric Regularization, Reduction and Blow-Up of the Planar Three-Body Problem

    Full text link
    We carry out a sequence of coordinate changes for the planar three-body problem which successively eliminate the translation and rotation symmetries, regularize all three double collision singularities and blow-up the triple collision. Parametrizing the configurations by the three relative position vectors maintains the symmetry among the masses and simplifies the regularization of binary collisions. Using size and shape coordinates facilitates the reduction by rotations and the blow-up of triple collision while emphasizing the role of the shape sphere. By using homogeneous coordinates to describe Hamiltonian systems whose configurations spaces are spheres or projective spaces, we are able to take a modern, global approach to these familiar problems. We also show how to obtain the reduced and regularized differential equations in several convenient local coordinates systems.Comment: 51 pages, 4 figure

    Colliding String Waves and Duality

    Get PDF
    The collision of plane waves corresponding to massless states of closed string is considered in DD-dimensional space-time. The reduced tree level effective action is known to be manifestly O(d,d)O(d,d) invariant, dd being the number of transverse spatial dimensions in the collision process. We adopt a coset space reformulation of the effective two dimensional theory and discuss the relation of this process with classical integrable systems in two dimensions in the presence of gravity. We show how it is possible to generate new backgrounds for the scattering process, from known background solutions to the equations of motion, in the coset reformulation. We present explicit calculations for the case of four space-time dimensions as an illustrative example.Comment: 14 page

    Initial Conditions and the Structure of the Singularity in Pre-Big-Bang Cosmology

    Get PDF
    We propose a picture, within the pre-big-bang approach, in which the universe emerges from a bath of plane gravitational and dilatonic waves. The waves interact gravitationally breaking the exact plane symmetry and lead generically to gravitational collapse resulting in a singularity with the Kasner-like structure. The analytic relations between the Kasner exponents and the initial data are explicitly evaluated and it is shown that pre-big-bang inflation may occur within a dense set of initial data. Finally, we argue that plane waves carry zero gravitational entropy and thus are, from a thermodynamical point of view, good candidates for the universe to emerge from.Comment: 18 pages, LaTeX, epsfig. 3 figures included. Minor changes; paragraph added in the introduction, references added and typos corrected. Final version published in Classical and Quantum Gravit

    Robot graphic simulation testbed

    Get PDF
    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts

    Characterization of initial fluctuations for the hydrodynamical description of heavy ion collisions

    Full text link
    Event-by-event fluctuations in the initial conditions for a hydrodynamical description of heavy-ion collisions are characterized. We propose a Bessel-Fourier decomposition with respect to the azimuthal angle, the radius in the transverse plane and rapidity. This allows for a complete characterization of fluctuations in all hydrodynamical fields including energy density, pressure, fluid velocity, shear stress and bulk viscous pressure. It has the advantage that fluctuations can be ordered with respect to their wave length and that they can be propagated mode-by-mode within the hydrodynamical formalism. Event ensembles can then be characterized in terms of a functional probability distribution. For the event ensemble of a Monte Carlo Glauber model, we provide evidence that the latter is close to Gaussian form, thus allowing for a particularly simple characterization of the event distribution.Comment: 40 pages, 16 figure
    • …
    corecore