4,546 research outputs found

    An optimal control strategy for collision avoidance of mobile robots in non-stationary environments

    Get PDF
    An optimal control formulation of the problem of collision avoidance of mobile robots in environments containing moving obstacles is presented. Collision avoidance is guaranteed if the minimum distance between the robot and the objects is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. Furthermore, time consistency with the nominal plan is desirable. A numerical solution of the optimization problem is obtained. Simulation results verify the value of the proposed strategy

    Generalized Regressive Motion: a Visual Cue to Collision

    Get PDF
    Brains and sensory systems evolved to guide motion. Central to this task is controlling the approach to stationary obstacles and detecting moving organisms. Looming has been proposed as the main monocular visual cue for detecting the approach of other animals and avoiding collisions with stationary obstacles. Elegant neural mechanisms for looming detection have been found in the brain of insects and vertebrates. However, looming has not been analyzed in the context of collisions between two moving animals. We propose an alternative strategy, Generalized Regressive Motion (GRM), which is consistent with recently observed behavior in fruit flies. Geometric analysis proves that GRM is a reliable cue to collision among conspecifics, whereas agent-based modeling suggests that GRM is a better cue than looming as a means to detect approach, prevent collisions and maintain mobility

    Neural Network Local Navigation of Mobile Robots in a Moving Obstacles Environment

    Get PDF
    IF AC Intelligent Components and Instruments for Control Applications, Budapest, Hungary, 1994This paper presents a local navigation method based on generalized predictive control. A modified cost function to avoid moving and static obstacles is presented. An Extended Kaiman Filter is proposed to predict the motions of the obstacles. A Neural Network implementation of this method is analysed. Simulation results are shown.Ministerio de Ciencia y Tecnología TAP93-0408Ministerio de Ciencia y Tecnología TAP93-058
    corecore