81 research outputs found

    Agent-based models of social behaviour and communication in evacuations:A systematic review

    Get PDF
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models

    Socially-Aware Navigation Planner Using Models of Human-Human Interaction

    Get PDF
    A real-time socially-aware navigation planner helps a mobile robot to navigate alongside humans in a socially acceptable manner. This navigation planner is a modification of nav_core package of Robot Operating System (ROS), based upon earlier work and further modified to use only egocentric sensors. The planner can be utilized to provide safe as well as socially appropriate robot navigation. Primitive features including interpersonal distance between the robot and an interaction partner and features of the environment (such as hallways detected in real-time) are used to reason about the current state of an interaction. Gaussian Mixture Models (GMM) are trained over these features from human-human interaction demonstrations of various interaction scenarios. This model is both used to discriminate different human actions related to their navigation behavior and to help in the trajectory selection process to provide a social-appropriateness score for a potential trajectory. This thesis presents a model based framework for navigation planning, a simulation-based evaluation of the model-based navigation behavior

    Agent-based models of social behaviour and communication in evacuations: A systematic review

    Full text link
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models.Comment: Pre-print submitted to Safety Science special issue following the 2023 Pedestrian and Evacuation Dynamics conferenc

    Multi-Scale Evacuation Models To Support Emergency And Disaster Response

    Get PDF
    Evacuation is a short-term measure to mitigate human injuries and losses by temporarily relocation of exposed population before, during, or after disasters. With the increasing growth of population and cities, buildings and urban areas are over-populated which brings about safety issues when there is a need for emergency evacuation. In disaster studies, simulation is widely used to explore how natural hazards might evolve in the future, and how societies might respond to these events. Accordingly, evacuation simulation is a potentially helpful tool for emergency responders and policy makers to evaluate the required time for evacuation and the estimated number and distribution of casualties under a disaster scenario. The healthcare system is an essential subsystem of communities which ensures the health and well-being of their residents. Hence, the resilience of the healthcare system plays an essential role in the resilience of the whole community. In disasters, patient mobility is a major challenge for healthcare systems to overcome. This is where the scientific society enters with modeling and simulation techniques to help decision-makers. Hospital evacuation simulation considering patients with different mobility characteristics, needs, and interactions, demands a microscopic modeling approach, like Agent-Based Modeling (ABM). However, as the system increases in size, the models become highly complex and intractable. Large-scale complex ABMs can be reduced by reformulating the micro-scale model of agents by a meso-scale model of population densities and partial differential equations, or a macro-scale model of population stocks and ordinary differential equations. However, reducing the size and fidelity of microscopic models to meso- or macro-scale models implies certain drawbacks. This dissertation contributes to the improvement of large-scale agent-based evacuation simulation and multi-scale hospital evacuation models. For large-scale agent-based models, application of bug navigation algorithms, popular in the field of robotics, is evaluated to improve the efficiency of such models. A candidate bug algorithm is proposed based on a performance evaluation framework, and its applicability and practicability are demonstrated by a real-world example. For hospital evacuation simulation, crowd evacuation considering people with different physical and mobility characteristics is modeled on three different scales: microscopic (ABM), mesoscopic (fluid dynamics model), and macroscopic (system dynamics model). Similar to the well-known Predator-Prey model, the results of this study show the extent to which macroscopic and mesoscopic models can produce global behaviors emerging from agents’ interactions in ABMs. To evaluate the performance of these multi-scale models, the evacuation of the emergency department at Johns Hopkins University is simulated, and the outputs and performance of the models are compared in terms of implementation complexity, required input data, provided output data, and computation time. It is concluded that the microscopic agent-based model is recommended to hospital emergency planners for long-term use such as evaluating different emergency scenarios and effectiveness of different evacuation plans. On the other hand, the macroscopic system dynamics model is best to be used as a simple tool (like an app) for rapid situation assessment and decision making in case of imminent events. The fluid dynamics model is found to be suitable only for studying crowd dynamics in medium to high densities, but it does not offer any competency as an evacuation simulation tool

    New approaches to evacuation modelling for fire safety engineering applications

    Get PDF
    This paper presents the findings of the workshop “New approaches to evacuation modelling”, which took place on the 11th of June 2017 in Lund (Sweden) within the Symposium of the International Association for Fire Safety Science (IAFSS). The workshop gathered international experts in the field of fire evacuation modelling from 19 different countries and was designed to build a dialogue between the fire evacuation modelling world and experts in areas outside of fire safety engineering. The contribution to fire evacuation modelling of five topics within research disciplines outside fire safety engineering (FSE) have been discussed during the workshop, namely 1) Psychology/Human Factors, 2) Sociology, 3) Applied Mathematics, 4) Transportation, 5) Dynamic Simulation and Biomechanics. The benefits of exchanging information between these two groups are highlighted here in light of the topic areas discussed and the feedback received by the evacuation modelling community during the workshop. This included the feasibility of development/application of modelling methods based on fields other than FSE as well as a discussion on their implementation strengths and limitations. Each subject area is here briefly presented and its links to fire evacuation modelling are discussed. The feedback received during the workshop is discussed through a set of insights which might be useful for the future developments of evacuation models for fire safety engineering

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Design, testing and validation of model predictive control for an unmanned ground vehicle

    Full text link
    The rapid increase in designing, manufacturing, and using autonomous robots has attracted numerous researchers and industries in recent decades. The logical motivation behind this interest is the wide range of applications. For instance, perimeter surveillance, search and rescue missions, agriculture, and construction. In this thesis, motion planning and control based on model predictive control (MPC) for unmanned ground vehicles (UGVs) is tackled. In addition, different variants of MPC are designed, analysed, and implemented for such non-holonomic systems. It is imperative to focus on the ability of MPC to handle constraints as one of the motivations. Furthermore, the proliferation of computer processing enables these systems to work in a real-time scenario. The controller's responsibility is to guarantee an accurate trajectory tracking process to deal with other specifications usually not considered or solved by the planner. However, the separation between planner and controller is not necessarily defined uniquely, even though it can be a hybrid process, as seen in part of this thesis. Firstly, a robust MPC is designed and implemented for a small-scale autonomous bulldozer in the presence of uncertainties, which uses an optimal control action and a feed-forward controller to suppress these uncertainties. More precisely, a linearised variant of MPC is deployed to solve the trajectory tracking problem of the vehicle. Afterwards, a nonlinear MPC is designed and implemented to solve the path-following problem of the UGV for masonry in a construction context, where longitudinal velocity and yaw rate are employed as control inputs to the platform. For both the control techniques, several experiments are performed to validate the robustness and accuracy of the proposed scheme. Those experiments are performed under realistic localisation accuracy, provided by a typical localiser. Most conspicuously, a novel proximal planning and control strategy is implemented in the presence of skid-slip and dynamic and static collision avoidance for the posture control and tracking control problems. The ability to operate in moving objects is critical for UGVs to function well. The approach offers specific planning capabilities, able to deal at high frequency with context characteristics, which the higher-level planner may not well solve. Those context characteristics are related to dynamic objects and other terrain details detected by the platform's onboard perception capabilities. In the control context, proximal and interior-point optimisation methods are used for MPC. Relevant attention is given to the processing time required by the MPC process to obtain the control actions at each actual control time. This concern is due to the need to optimise each control action, which must be calculated and applied in real-time. Because the length of a prediction horizon is critical in practical applications, it is worth looking into in further detail. In another study, the accuracies of robust and nonlinear model predictive controllers are compared. Finally, a hybrid controller is proposed and implemented. This approach exploits the availability of a simplified cost-to-go function (which is provided by a higher-level planner); thus, the hybrid approach fuses, in real-time, the nominal CTG function (nominal terrain map) with the rest of the critical constraints, which the planner usually ignores. The conducted research fills necessary gaps in the application areas of MPC and UGVs. Both theoretical and practical contributions have been made in this thesis. Moreover, extensive simulations and experiments are performed to test and verify the working of MPC with a reasonable processing capability of the onboard process

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Planning for human robot interaction

    Get PDF
    Les avancĂ©es rĂ©centes en robotique inspirent des visions de robots domestiques et de service rendant nos vies plus faciles et plus confortables. De tels robots pourront exĂ©cuter diffĂ©rentes tĂąches de manipulation d'objets nĂ©cessaires pour des travaux de mĂ©nage, de façon autonome ou en coopĂ©ration avec des humains. Dans ce rĂŽle de compagnon humain, le robot doit rĂ©pondre Ă  de nombreuses exigences additionnelles comparĂ©es aux domaines bien Ă©tablis de la robotique industrielle. Le but de la planification pour les robots est de parvenir Ă  Ă©laborer un comportement visant Ă  satisfaire un but et qui obtient des rĂ©sultats dĂ©sirĂ©s et dans de bonnes conditions d'efficacitĂ©. Mais dans l'interaction homme-robot (HRI), le comportement robot ne peut pas simplement ĂȘtre jugĂ© en termes de rĂ©sultats corrects, mais il doit ĂȘtre agrĂ©able aux acteurs humains. Cela signifie que le comportement du robot doit obĂ©ir Ă  des critĂšres de qualitĂ© supplĂ©mentaire. Il doit ĂȘtre sĂ»r, confortable pour l'homme, et ĂȘtre intuitivement compris. Il existe des pratiques pour assurer la sĂ©curitĂ© et offrir un confort en gardant des distances suffisantes entre le robot et des personnes Ă  proximitĂ©. Toutefois fournir un comportement qui est intuitivement compris reste un dĂ©fi. Ce dĂ©fi augmente considĂ©rablement dans les situations d'interaction homme-robot dynamique, oĂč les actions de la personne sont imprĂ©visibles, le robot devant adapter en permanence ses plans aux changements. Cette thĂšse propose une approche nouvelle et des mĂ©thodes pour amĂ©liorer la lisibilitĂ© du comportement du robot dans des situations dynamiques. Cette approche ne considĂšre pas seulement la qualitĂ© d'un seul plan, mais le comportement du robot qui est parfois le rĂ©sultat de replanifications rĂ©pĂ©tĂ©es au cours d'une interaction. Pour ce qui concerne les tĂąches de navigation, cette thĂšse prĂ©sente des fonctions de coĂ»ts directionnels qui Ă©vitent les problĂšmes dans des situations de conflit. Pour la planification d'action en gĂ©nĂ©ral, cette thĂšse propose une approche de replanification locale des actions de transport basĂ© sur les coĂ»ts de navigation, pour Ă©laborer un comportement opportuniste adaptatif. Les deux approches, complĂ©mentaires, facilitent la comprĂ©hension, par les acteurs et observateurs humains, des intentions du robot et permettent de rĂ©duire leur confusion.The recent advances in robotics inspire visions of household and service robots making our lives easier and more comfortable. Such robots will be able to perform several object manipulation tasks required for household chores, autonomously or in cooperation with humans. In that role of human companion, the robot has to satisfy many additional requirements compared to well established fields of industrial robotics. The purpose of planning for robots is to achieve robot behavior that is goal-directed and establishes correct results. But in human-robot-interaction, robot behavior cannot merely be judged in terms of correct results, but must be agree-able to human stakeholders. This means that the robot behavior must suffice additional quality criteria. It must be safe, comfortable to human, and intuitively be understood. There are established practices to ensure safety and provide comfort by keeping sufficient distances between the robot and nearby persons. However providing behavior that is intuitively understood remains a challenge. This challenge greatly increases in cases of dynamic human-robot interactions, where the actions of the human in the future are unpredictable, and the robot needs to constantly adapt its plans to changes. This thesis provides novel approaches to improve the legibility of robot behavior in such dynamic situations. Key to that approach is not to merely consider the quality of a single plan, but the behavior of the robot as a result of replanning multiple times during an interaction. For navigation planning, this thesis introduces directional cost functions that avoid problems in conflict situations. For action planning, this thesis provides the approach of local replanning of transport actions based on navigational costs, to provide opportunistic behavior. Both measures help human observers understand the robot's beliefs and intentions during interactions and reduce confusion
    • 

    corecore