2,882 research outputs found

    A deformation transformer for real-time cloth animation

    Get PDF
    Achieving interactive performance in cloth animation has significant implications in computer games and other interactive graphics applications. Although much progress has been made, it is still much desired to have real-time high-quality results that well preserve dynamic folds and wrinkles. In this paper, we introduce a hybrid method for real-time cloth animation. It relies on datadriven models to capture the relationship between cloth deformations at two resolutions. Such data-driven models are responsible for transforming low-quality simulated deformations at the low resolution into high-resolution cloth deformations with dynamically introduced fine details. Our data-driven transformation is trained using rotation invariant quantities extracted from the cloth models, and is independent of the simulation technique chosen for the lower resolution model. We have also developed a fast collision detection and handling scheme based on dynamically transformed bounding volumes. All the components in our algorithm can be efficiently implemented on programmable graphics hardware to achieve an overall real-time performance on high-resolution cloth models. © 2010 ACM.postprin

    Automating the mean-field method for large dynamic gossip networks

    Get PDF
    We investigate an abstraction method, called mean- field method, for the performance evaluation of dynamic net- works with pairwise communication between nodes. It allows us to evaluate systems with very large numbers of nodes, that is, systems of a size where traditional performance evaluation methods fall short.\ud While the mean-field analysis is well-established in epidemics and for chemical reaction systems, it is rarely used for commu- nication networks because a mean-field model tends to abstract away the underlying topology.\ud To represent topological information, however, we extend the mean-field analysis with the concept of classes of states. At the abstraction level of classes we define the network topology by means of connectivity between nodes. This enables us to encode physical node positions and model dynamic networks by allowing nodes to change their class membership whenever they make a local state transition. Based on these extensions, we derive and implement algorithms for automating a mean-field based performance evaluation
    corecore