246 research outputs found

    Graphics simulation and training aids for advanced teleoperation

    Get PDF
    Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations

    Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 Second Report

    Get PDF
    We are conducting research in the area of teleoperation with feedback delay. Delay occurs with earth-based teleoperation in space and with surface-based teleoperation with untethered submersibles when acoustic communication links are involved. The delay in obtaining position and force feedback from remote slave arms makes teleoperation extremely difficult leading to very low productivity. We have combined computer graphics with manipulator programming to provide a solution to the problem. A teleoperator master arm is interfaced to a graphics based simulator of the remote environment. The system is then coupled with a robot manipulator at the remote, delayed site. The operator\u27s actions are monitored to provide both kinesthetic and visual feedback and to generate symbolic motion commands to the remote slave. The slave robot then executes these symbolic commands delayed in time. While much of a task proceeds error free, when an error does occur, the slave system transmits data back to the master environment which is then reset to the error state from which the operator continues the task

    From Telerobotic towards Nanorobotic Applications

    Get PDF

    Use of virtual reality in off-line robot programming

    Get PDF
    http://www.worldcat.org/oclc/3075204

    Human-robot coexistence and interaction in open industrial cells

    Get PDF
    Recent research results on human\u2013robot interaction and collaborative robotics are leaving behind the traditional paradigm of robots living in a separated space inside safety cages, allowing humans and robot to work together for completing an increasing number of complex industrial tasks. In this context, safety of the human operator is a main concern. In this paper, we present a framework for ensuring human safety in a robotic cell that allows human\u2013robot coexistence and dependable interaction. The framework is based on a layered control architecture that exploits an effective algorithm for online monitoring of relative human\u2013robot distance using depth sensors. This method allows to modify in real time the robot behavior depending on the user position, without limiting the operative robot workspace in a too conservative way. In order to guarantee redundancy and diversity at the safety level, additional certified laser scanners monitor human\u2013robot proximity in the cell and safe communication protocols and logical units are used for the smooth integration with an industrial software for safe low-level robot control. The implemented concept includes a smart human-machine interface to support in-process collaborative activities and for a contactless interaction with gesture recognition of operator commands. Coexistence and interaction are illustrated and tested in an industrial cell, in which a robot moves a tool that measures the quality of a polished metallic part while the operator performs a close evaluation of the same workpiece

    Off-the-shelf bin picking workcell with visual pose estimation: A case study on the world robot summit 2018 kitting task

    Full text link
    The World Robot Summit 2018 Assembly Challenge included four different tasks. The kitting task, which required bin-picking, was the task in which the fewest points were obtained. However, bin-picking is a vital skill that can significantly increase the flexibility of robotic set-ups, and is, therefore, an important research field. In recent years advancements have been made in sensor technology and pose estimation algorithms. These advancements allow for better performance when performing visual pose estimation. This paper shows that by utilizing new vision sensors and pose estimation algorithms pose estimation in bins can be performed successfully. We also implement a workcell for bin picking along with a force based grasping approach to perform the complete bin picking. Our set-up is tested on the World Robot Summit 2018 Assembly Challenge and successfully obtains a higher score compared with all teams at the competition. This demonstrate that current technology can perform bin-picking at a much higher level compared with previous results.Comment: 7 pages, 7 figures, 2 table

    A Calibration Method for the Integrated Design of Finishing Robotic Workcells in the Aerospace Industry

    Get PDF
    Industrial robotics provides high flexibility and reconfigurability, cost effectiveness and user friendly programming for many applications but still lacks in accuracy. An effective workcell calibration reduces the errors in robotic manufacturing and contributes to extend the use of industrial robots to perform high quality finishing of complex parts in the aerospace industry. A novel workcell calibration method is embedded in an integrated design framework for an in-depth exploitation of CAD-based simulation and offline programming. The method is composed of two steps: a first offline calibration of the workpiece-independent elements in the workcell layout and a final automated online calibration of workpiece-dependent elements. The method is finally applied to a robotic workcell for finishing aluminum housings of helicopter gear transmissions, characterized by complex and non-repetitive shapes, and by severe dimensional and geometrical accuracy demands. Experimental results demonstrate enhanced performances of the robotic workcell and improved final quality of the housings

    Simulation in Automated Guided Vehicle System Design

    Get PDF
    The intense global competition that manufacturing companies face today results in an increase of product variety and shorter product life cycles. One response to this threat is agile manufacturing concepts. This requires materials handling systems that are agile and capable of reconfiguration. As competition in the world marketplace becomes increasingly customer-driven, manufacturing environments must be highly reconfigurable and responsive to accommodate product and process changes, with rigid, static automation systems giving way to more flexible types. Automated Guided Vehicle Systems (AGVS) have such capabilities and AGV functionality has been developed to improve flexibility and diminish the traditional disadvantages of AGV-systems. The AGV-system design is however a multi-faceted problem with a large number of design factors of which many are correlating and interdependent. Available methods and techniques exhibit problems in supporting the whole design process. A research review of the work reported on AGVS development in combination with simulation revealed that of 39 papers only four were industrially related. Most work was on the conceptual design phase, but little has been reported on the detailed simulation of AGVS. Semi-autonomous vehicles (SA V) are an innovative concept to overcome the problems of inflexible -systems and to improve materials handling functionality. The SA V concept introduces a higher degree of autonomy in industrial AGV -systems with the man-in-the-Ioop. The introduction of autonomy in industrial applications is approached by explicitly controlling the level of autonomy at different occasions. The SA V s are easy to program and easily reconfigurable regarding navigation systems and material handling equipment. Novel approaches to materials handling like the SA V -concept place new requirements on the AGVS development and the use of simulation as a part of the process. Traditional AGV -system simulation approaches do not fully meet these requirements and the improved functionality of AGVs is not used to its full power. There is a considerflble potential in shortening the AGV -system design-cycle, and thus the manufacturing system design-cycle, and still achieve more accurate solutions well suited for MRS tasks. Recent developments in simulation tools for manufacturing have improved production engineering development and the tools are being adopted more widely in industry. For the development of AGV -systems this has not fully been exploited. Previous research has focused on the conceptual part of the design process and many simulation approaches to AGV -system design lack in validity. In this thesis a methodology is proposed for the structured development of AGV -systems using simulation. Elements of this methodology address the development of novel functionality. The objective of the first research case of this research study was to identify factors for industrial AGV -system simulation. The second research case focuses on simulation in the design of Semi-autonomous vehicles, and the third case evaluates a simulation based design framework. This research study has advanced development by offering a framework for developing testing and evaluating AGV -systems, based on concurrent development using a virtual environment. The ability to exploit unique or novel features of AGVs based on a virtual environment improves the potential of AGV-systems considerably.University of Skovde. European Commission for funding the INCO/COPERNICUS Projec
    • …
    corecore