23 research outputs found

    Applications of ontology in the internet of things: A systematic analysis

    Get PDF
    Ontology has been increasingly implemented to facilitate the Internet of Things (IoT) activities, such as tracking and information discovery, storage, information exchange, and object addressing. However, a complete understanding of using ontology in the IoT mechanism remains lacking. The main goal of this research is to recognize the use of ontology in the IoT process and investigate the services of ontology in IoT activities. A systematic literature review (SLR) is conducted using predefined protocols to analyze the literature about the usage of ontologies in IoT. The following conclusions are obtained from the SLR. (1) Primary studies (i.e., selected 115 articles) have addressed the need to use ontologies in IoT for industries and the academe, especially to minimize interoperability and integration of IoT devices. (2) About 31.30% of extant literature discussed ontology development concerning the IoT interoperability issue, while IoT privacy and integration issues are partially discussed in the literature. (3) IoT styles of modeling ontologies are diverse, whereas 35.65% of total studies adopted the OWL style. (4) The 32 articles (i.e., 27.83% of the total studies) reused IoT ontologies to handle diverse IoT methodologies. (5) A total of 45 IoT ontologies are well acknowledged, but the IoT community has widely utilized none. An in-depth analysis of different IoT ontologies suggests that the existing ontologies are beneficial in designing new IoT ontology or achieving three main requirements of the IoT field: interoperability, integration, and privacy. This SLR is finalized by identifying numerous validity threats and future directions

    Cognitive assistance in intelligent environments

    Get PDF
    Tese de doutoramento em Engenharia BiomédicaCurrently society responds badly to some social issues. One of the problems lies on the society concept itself. The common pyramid describing the social strata does not reflect the new social reality, given that the elderly strata largely exceed the teenage strata. This fact also implies a change in terms of social and medical needs. Thus, a great number of medical services should be adapted to respond to the needs of the elderly people. In fact, any common family cannot take care of an elderly person and, in many cases they cannot also afford the required medical care. Having less time, and often, less money, a family cannot have their older relatives in their homes. In addition, the necessary support required to overcome the elderly limitations, makes it even more difficult. One solution could be that elderly people go to nursing homes or care centers. However, due to the overgrowth of the elderly community, geriatric units are not enough to take care of all those people. As a solution, technology can provide wellbeing and assistance in the elderly everyday life through personalized services at low cost. This thesis presents a cognitive assistant platform, named iGenda. A cognitive assistant provides numerous user oriented services, and it ubiquitously and transparently interacts directly with the user. Therefore, this research work has as motto: impacting the user’s life without causing an impact. It means that the platform aim is to influence the user’s life, by providing a greater quality of life, without being too complex to use. The answers to our society’s social and technological challenges are provided by the development of a platform that is intuitive to the user, cheap and able to be integrated in an Ambient Assisted Living ecosystem. Thus, this thesis presents a multi-agent, platform-independent architecture capable of intelligent scheduling. Being the cognitive assistant implemented in four case studies, namely: a sensor platform, a digital clinical guideline system, an orientation system based on augmented reality, and a fall detection application. These case studies validate the social and technological challenges, therefore the iGenda too. This is due to the complete integration with other systems, without major changes of the architecture and archetype.Atualmente, a sociedade debate-se com um problema para o qual não há uma solução simples. O problema reside na própria sociedade, mais especificamente no seu conceito. A pirâmide populacional clássica não retrata a sociedade como é atualmente, sendo que o número de idosos ultrapassa o número de jovens. Ora, este facto acarreta uma mudança nas necessidades sociais e cuidados médicos. Deste modo, um grande número de serviços médicos têm que ser reajustados para as necessidades das pessoas mais idosas. Com menos tempo e frequentemente sem dinheiro, a família não é capaz de ter um idoso na sua casa. Tendo em conta as limitações das pessoas idosas em termos de saúde, a incapacidade de assistir uma pessoa idosa é ainda maior. Uma possível solução é colocar os idosos em casas de repouso ou centros geriátricos. Contudo, devido ao crescimento da comunidade idosa, não existem unidades geriátricas suficientes para todas as pessoas. A tecnologia pode providenciar assistência e bem-estar na vida cotidiana de uma pessoa idosa, através de serviços personalizados de baixo custo, servindo como uma possível resposta aos problemas apresentados. Nesta tese apresenta-se o iGenda, como uma plataforma de desenvolvimento de assistentes cognitivos. Um assistente cognitivo que assegura vários serviços orientados ao utilizador, interagindo com o utilizador de forma ubíqua e transparente. Este trabalho de investigação tem como lema: mudar a vida do utilizador sem o mudar. Isto significa que a plataforma tem como objetivo mudar a vida do utilizador, ao proporcionar uma maior qualidade de vida, sem que o utilizador tenha dificuldade a adaptar-se ou a utilizar a plataforma. As respostas para os desafios sociais e tecnológicos apresentados pela nossa sociedade são fornecidas pelo desenvolvimento de uma plataforma intuitiva, barata e capaz de ser integrada num ecossistema de Ambient Assisted Living. Deste modo, o processo de agendamento inteligente é assegurado por uma arquitetura multiagente e independente de plataformas, apresentada nesta tese. Sendo que o assistente cognitivo é implementado em quatro casos de estudo: uma plataforma de sensores, um sistema digital de guias clínicos, um sistema de orientação baseado em realidade aumentada e um sistema de deteção de quedas. Estes casos de estudo validam os desafios sociais e tecnológicos, portanto validando também o iGenda. Isto verifica-se com a integração completa com outros sistemas, sem muitas alterações à arquitetura ou ao arquétip

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    Innovative Technologies and Services for Smart Cities

    Get PDF
    A smart city is a modern technology-driven urban area which uses sensing devices, information, and communication technology connected to the internet of things (IoTs) for the optimum and efficient utilization of infrastructures and services with the goal of improving the living conditions of citizens. Increasing populations, lower budgets, limited resources, and compatibility of the upgraded technologies are some of the few problems affecting the implementation of smart cities. Hence, there is continuous advancement regarding technologies for the implementation of smart cities. The aim of this Special Issue is to report on the design and development of integrated/smart sensors, a universal interfacing platform, along with the IoT framework, extending it to next-generation communication networks for monitoring parameters of interest with the goal of achieving smart cities. The proposed universal interfacing platform with the IoT framework will solve many challenging issues and significantly boost the growth of IoT-related applications, not just in the environmental monitoring domain but in the other key areas, such as smart home, assistive technology for the elderly care, smart city with smart waste management, smart E-metering, smart water supply, intelligent traffic control, smart grid, remote healthcare applications, etc., signifying benefits for all countries

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Micro-intelligence for the IoT: logic-based models and technologies

    Get PDF
    Computing is moving towards pervasive, ubiquitous environments in which devices, software agents and services are all expected to seamlessly integrate and cooperate in support of human objectives. An important next step for pervasive computing is the integration of intelligent agents that employ knowledge and reasoning to understand the local context and share this information in support of intelligent applications and interfaces. Such scenarios, characterised by "computation everywhere around us", require on the one hand software components with intelligent behaviour in terms of objectives and context, and on the other their integration so as to produce social intelligence. Logic Programming (LP) has been recognised as a natural paradigm for addressing the needs of distributed intelligence. Yet, the development of novel architectures, in particular in the context Internet of Things (IoT), and the emergence of new domains and potential applications, are creating new research opportunities where LP could be exploited, when suitably coupled with agent technologies and methods so that it can fully develop its potential in the new context. In particular, the LP and its extensions can act as micro-intelligence sources for the IoT world, both at the individual and the social level, provided that they are reconsidered in a renewed architectural vision. Such micro-intelligence sources could deal with the local knowledge of the devices taking into account the domain specificity of each environment. The goal of this thesis is to re-contextualise LP and its extensions in these new domains as a source of micro-intelligence for the IoT world, envisioning a large number of small computational units distributed and situated in the environment, thus promoting the local exploitation of symbolic languages with inference capabilities. The topic is explored in depth and the effectiveness of novel LP models and architectures -and of the corresponding technology- expressing the concept of micro-intelligence is tested

    Inferring Activities of Daily Living of Home-Care Patients Through Wearable and Ambient Sensing

    Get PDF
    There is an increasing demand for remote healthcare systems for single person households as it facilitates independent living in a smart home setting. Much research effort has been invested to develop such systems to monitor and infer if the person is able to perform their routine activities on a daily basis. In this research study, two different methods have been proposed for recognizing activities of daily life (ADL) using wearable and ambient sensing respectively. The thesis presents a novel algorithm for near real-time recognition of low-level micro-activities and their associated zone of occurrence within the house by using just the wearable as the lone sensor data. This is achieved by gathering location information of the target person using a wearable beacon embedded with magnetometer and inertial sensors. A hybrid three-tier approach is adopted where the main intention is to map the location of a person performing an activity with pre-defined house landmarks and zones in the offline labeled database. Experimental results demonstrate that it is possible to achieve centimeter-level accuracy for recognition of micro-activities and a classification accuracy of 85% for trajectory prediction. Furthermore, addi-tional tests were carried out to assess whether increased antenna gain improves the ranking accuracy of the fingerprinting method adopted for location estimation. The thesis explores another method using ambient sensors for activity recognition by integrating stream reasoning, ontological modeling and probabilistic inference using Markov Logic Networks. The incoming sensor data stream is analyzed in real time by exploring semantic relationships, location context and temporal rea-soning between individual events using a stream-processing engine. Experimental analysis of the proposed method with two real-world datasets shows improvement in recognizing complex activities carried out in a smart home environment. An average F-measure score of 92.35% and 85.75% was achieved for recognition of interwoven activities using this method

    μGIM - Microgrid intelligent management system based on a multi-agent approach and the active participation of end-users

    Get PDF
    [ES] Los sistemas de potencia y energía están cambiando su paradigma tradicional, de sistemas centralizados a sistemas descentralizados. La aparición de redes inteligentes permite la integración de recursos energéticos descentralizados y promueve la gestión inclusiva que involucra a los usuarios finales, impulsada por la gestión del lado de la demanda, la energía transactiva y la respuesta a la demanda. Garantizar la escalabilidad y la estabilidad del servicio proporcionado por la red, en este nuevo paradigma de redes inteligentes, es más difícil porque no hay una única sala de operaciones centralizada donde se tomen todas las decisiones. Para implementar con éxito redes inteligentes, es necesario combinar esfuerzos entre la ingeniería eléctrica y la ingeniería informática. La ingeniería eléctrica debe garantizar el correcto funcionamiento físico de las redes inteligentes y de sus componentes, estableciendo las bases para un adecuado monitoreo, control, gestión, y métodos de operación. La ingeniería informática desempeña un papel importante al proporcionar los modelos y herramientas computacionales adecuados para administrar y operar la red inteligente y sus partes constituyentes, representando adecuadamente a todos los diferentes actores involucrados. Estos modelos deben considerar los objetivos individuales y comunes de los actores que proporcionan las bases para garantizar interacciones competitivas y cooperativas capaces de satisfacer a los actores individuales, así como cumplir con los requisitos comunes con respecto a la sostenibilidad técnica, ambiental y económica del Sistema. La naturaleza distribuida de las redes inteligentes permite, incentiva y beneficia enormemente la participación activa de los usuarios finales, desde actores grandes hasta actores más pequeños, como los consumidores residenciales. Uno de los principales problemas en la planificación y operación de redes eléctricas es la variación de la demanda de energía, que a menudo se duplica más que durante las horas pico en comparación con la demanda fuera de pico. Tradicionalmente, esta variación dio como resultado la construcción de plantas de generación de energía y grandes inversiones en líneas de red y subestaciones. El uso masivo de fuentes de energía renovables implica mayor volatilidad en lo relativo a la generación, lo que hace que sea más difícil equilibrar el consumo y la generación. La participación de los actores de la red inteligente, habilitada por la energía transactiva y la respuesta a la demanda, puede proporcionar flexibilidad en desde el punto de vista de la demanda, facilitando la operación del sistema y haciendo frente a la creciente participación de las energías renovables. En el ámbito de las redes inteligentes, es posible construir y operar redes más pequeñas, llamadas microrredes. Esas son redes geográficamente limitadas con gestión y operación local. Pueden verse como áreas geográficas restringidas para las cuales la red eléctrica generalmente opera físicamente conectada a la red principal, pero también puede operar en modo isla, lo que proporciona independencia de la red principal. Esta investigación de doctorado, realizada bajo el Programa de Doctorado en Ingeniería Informática de la Universidad de Salamanca, aborda el estudio y el análisis de la gestión de microrredes, considerando la participación activa de los usuarios finales y la gestión energética de lascarga eléctrica y los recursos energéticos de los usuarios finales. En este trabajo de investigación se ha analizado el uso de conceptos de ingeniería informática, particularmente del campo de la inteligencia artificial, para apoyar la gestión de las microrredes, proponiendo un sistema de gestión inteligente de microrredes (μGIM) basado en un enfoque de múltiples agentes y en la participación activa de usuarios. Esta solución se compone de tres sistemas que combinan hardware y software: el emulador de virtual a realidad (V2R), el enchufe inteligente de conciencia ambiental de Internet de las cosas (EnAPlug), y la computadora de placa única para energía basada en el agente (S4E) para permitir la gestión del lado de la demanda y la energía transactiva. Estos sistemas fueron concebidos, desarrollados y probados para permitir la validación de metodologías de gestión de microrredes, es decir, para la participación de los usuarios finales y para la optimización inteligente de los recursos. Este documento presenta todos los principales modelos y resultados obtenidos durante esta investigación de doctorado, con respecto a análisis de vanguardia, concepción de sistemas, desarrollo de sistemas, resultados de experimentación y descubrimientos principales. Los sistemas se han evaluado en escenarios reales, desde laboratorios hasta sitios piloto. En total, se han publicado veinte artículos científicos, de los cuales nueve se han hecho en revistas especializadas. Esta investigación de doctorado realizó contribuciones a dos proyectos H2020 (DOMINOES y DREAM-GO), dos proyectos ITEA (M2MGrids y SPEAR), tres proyectos portugueses (SIMOCE, NetEffiCity y AVIGAE) y un proyecto con financiación en cascada H2020 (Eco-Rural -IoT)

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems
    corecore