2,314 research outputs found

    Multiagent decision making and learning in urban environments

    Get PDF

    Sequential Decision Making with Untrustworthy Service Providers

    No full text
    In this paper, we deal with the sequential decision making problem of agents operating in computational economies, where there is uncertainty regarding the trustworthiness of service providers populating the environment. Specifically, we propose a generic Bayesian trust model, and formulate the optimal Bayesian solution to the exploration-exploitation problem facing the agents when repeatedly interacting with others in such environments. We then present a computationally tractable Bayesian reinforcement learning algorithm to approximate that solution by taking into account the expected value of perfect information of an agent's actions. Our algorithm is shown to dramatically outperform all previous finalists of the international Agent Reputation and Trust (ART) competition, including the winner from both years the competition has been run

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Seeds Buffering for Information Spreading Processes

    Full text link
    Seeding strategies for influence maximization in social networks have been studied for more than a decade. They have mainly relied on the activation of all resources (seeds) simultaneously in the beginning; yet, it has been shown that sequential seeding strategies are commonly better. This research focuses on studying sequential seeding with buffering, which is an extension to basic sequential seeding concept. The proposed method avoids choosing nodes that will be activated through the natural diffusion process, which is leading to better use of the budget for activating seed nodes in the social influence process. This approach was compared with sequential seeding without buffering and single stage seeding. The results on both real and artificial social networks confirm that the buffer-based consecutive seeding is a good trade-off between the final coverage and the time to reach it. It performs significantly better than its rivals for a fixed budget. The gain is obtained by dynamic rankings and the ability to detect network areas with nodes that are not yet activated and have high potential of activating their neighbours.Comment: Jankowski, J., Br\'odka, P., Michalski, R., & Kazienko, P. (2017, September). Seeds Buffering for Information Spreading Processes. In International Conference on Social Informatics (pp. 628-641). Springe

    How should a principal reward and support agents when firm performance is characterized by success or failure?

    Get PDF
    Principal-agent models with multiple agents typically assume that the principal wishes to maximize the sum of the agents' achievements (net of the rewards paid to them). But in many settings, like R&D, all that the principal "Needs" is that at least one agent will be "successful." We identify settings where the principal actually wants agents to refrain from exerting high effort in order to save expected compensation. We show that the number of agents can decrease in the project's value for the principal. We also consider sequential efforts and investigate settings where the principal can provide support to agents
    • 

    corecore