7,124 research outputs found

    "May I borrow Your Filter?" Exchanging Filters to Combat Spam in a Community

    Get PDF
    Leveraging social networks in computer systems can be effective in dealing with a number of trust and security issues. Spam is one such issue where the "wisdom of crowds" can be harnessed by mining the collective knowledge of ordinary individuals. In this paper, we present a mechanism through which members of a virtual community can exchange information to combat spam. Previous attempts at collaborative spam filtering have concentrated on digest-based indexing techniques to share digests or fingerprints of emails that are known to be spam. We take a different approach and allow users to share their spam filters instead, thus dramatically reducing the amount of traffic generated in the network. The resultant diversity in the filters and cooperation in a community allows it to respond to spam in an autonomic fashion. As a test case for exchanging filters we use the popular SpamAssassin spam filtering software and show that exchanging spam filters provides an alternative method to improve spam filtering performance

    Detecting Abnormal Behavior in Web Applications

    Get PDF
    The rapid advance of web technologies has made the Web an essential part of our daily lives. However, network attacks have exploited vulnerabilities of web applications, and caused substantial damages to Internet users. Detecting network attacks is the first and important step in network security. A major branch in this area is anomaly detection. This dissertation concentrates on detecting abnormal behaviors in web applications by employing the following methodology. For a web application, we conduct a set of measurements to reveal the existence of abnormal behaviors in it. We observe the differences between normal and abnormal behaviors. By applying a variety of methods in information extraction, such as heuristics algorithms, machine learning, and information theory, we extract features useful for building a classification system to detect abnormal behaviors.;In particular, we have studied four detection problems in web security. The first is detecting unauthorized hotlinking behavior that plagues hosting servers on the Internet. We analyze a group of common hotlinking attacks and web resources targeted by them. Then we present an anti-hotlinking framework for protecting materials on hosting servers. The second problem is detecting aggressive behavior of automation on Twitter. Our work determines whether a Twitter user is human, bot or cyborg based on the degree of automation. We observe the differences among the three categories in terms of tweeting behavior, tweet content, and account properties. We propose a classification system that uses the combination of features extracted from an unknown user to determine the likelihood of being a human, bot or cyborg. Furthermore, we shift the detection perspective from automation to spam, and introduce the third problem, namely detecting social spam campaigns on Twitter. Evolved from individual spammers, spam campaigns manipulate and coordinate multiple accounts to spread spam on Twitter, and display some collective characteristics. We design an automatic classification system based on machine learning, and apply multiple features to classifying spam campaigns. Complementary to conventional spam detection methods, our work brings efficiency and robustness. Finally, we extend our detection research into the blogosphere to capture blog bots. In this problem, detecting the human presence is an effective defense against the automatic posting ability of blog bots. We introduce behavioral biometrics, mainly mouse and keyboard dynamics, to distinguish between human and bot. By passively monitoring user browsing activities, this detection method does not require any direct user participation, and improves the user experience

    Social Fingerprinting: detection of spambot groups through DNA-inspired behavioral modeling

    Full text link
    Spambot detection in online social networks is a long-lasting challenge involving the study and design of detection techniques capable of efficiently identifying ever-evolving spammers. Recently, a new wave of social spambots has emerged, with advanced human-like characteristics that allow them to go undetected even by current state-of-the-art algorithms. In this paper, we show that efficient spambots detection can be achieved via an in-depth analysis of their collective behaviors exploiting the digital DNA technique for modeling the behaviors of social network users. Inspired by its biological counterpart, in the digital DNA representation the behavioral lifetime of a digital account is encoded in a sequence of characters. Then, we define a similarity measure for such digital DNA sequences. We build upon digital DNA and the similarity between groups of users to characterize both genuine accounts and spambots. Leveraging such characterization, we design the Social Fingerprinting technique, which is able to discriminate among spambots and genuine accounts in both a supervised and an unsupervised fashion. We finally evaluate the effectiveness of Social Fingerprinting and we compare it with three state-of-the-art detection algorithms. Among the peculiarities of our approach is the possibility to apply off-the-shelf DNA analysis techniques to study online users behaviors and to efficiently rely on a limited number of lightweight account characteristics

    HitFraud: A Broad Learning Approach for Collective Fraud Detection in Heterogeneous Information Networks

    Full text link
    On electronic game platforms, different payment transactions have different levels of risk. Risk is generally higher for digital goods in e-commerce. However, it differs based on product and its popularity, the offer type (packaged game, virtual currency to a game or subscription service), storefront and geography. Existing fraud policies and models make decisions independently for each transaction based on transaction attributes, payment velocities, user characteristics, and other relevant information. However, suspicious transactions may still evade detection and hence we propose a broad learning approach leveraging a graph based perspective to uncover relationships among suspicious transactions, i.e., inter-transaction dependency. Our focus is to detect suspicious transactions by capturing common fraudulent behaviors that would not be considered suspicious when being considered in isolation. In this paper, we present HitFraud that leverages heterogeneous information networks for collective fraud detection by exploring correlated and fast evolving fraudulent behaviors. First, a heterogeneous information network is designed to link entities of interest in the transaction database via different semantics. Then, graph based features are efficiently discovered from the network exploiting the concept of meta-paths, and decisions on frauds are made collectively on test instances. Experiments on real-world payment transaction data from Electronic Arts demonstrate that the prediction performance is effectively boosted by HitFraud with fast convergence where the computation of meta-path based features is largely optimized. Notably, recall can be improved up to 7.93% and F-score 4.62% compared to baselines.Comment: ICDM 201

    Detecting and Tracking the Spread of Astroturf Memes in Microblog Streams

    Full text link
    Online social media are complementing and in some cases replacing person-to-person social interaction and redefining the diffusion of information. In particular, microblogs have become crucial grounds on which public relations, marketing, and political battles are fought. We introduce an extensible framework that will enable the real-time analysis of meme diffusion in social media by mining, visualizing, mapping, classifying, and modeling massive streams of public microblogging events. We describe a Web service that leverages this framework to track political memes in Twitter and help detect astroturfing, smear campaigns, and other misinformation in the context of U.S. political elections. We present some cases of abusive behaviors uncovered by our service. Finally, we discuss promising preliminary results on the detection of suspicious memes via supervised learning based on features extracted from the topology of the diffusion networks, sentiment analysis, and crowdsourced annotations
    • …
    corecore