2,182 research outputs found

    Deep Binary Reconstruction for Cross-modal Hashing

    Full text link
    With the increasing demand of massive multimodal data storage and organization, cross-modal retrieval based on hashing technique has drawn much attention nowadays. It takes the binary codes of one modality as the query to retrieve the relevant hashing codes of another modality. However, the existing binary constraint makes it difficult to find the optimal cross-modal hashing function. Most approaches choose to relax the constraint and perform thresholding strategy on the real-value representation instead of directly solving the original objective. In this paper, we first provide a concrete analysis about the effectiveness of multimodal networks in preserving the inter- and intra-modal consistency. Based on the analysis, we provide a so-called Deep Binary Reconstruction (DBRC) network that can directly learn the binary hashing codes in an unsupervised fashion. The superiority comes from a proposed simple but efficient activation function, named as Adaptive Tanh (ATanh). The ATanh function can adaptively learn the binary codes and be trained via back-propagation. Extensive experiments on three benchmark datasets demonstrate that DBRC outperforms several state-of-the-art methods in both image2text and text2image retrieval task.Comment: 8 pages, 5 figures, accepted by ACM Multimedia 201

    Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images

    Full text link
    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation hasn't efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address the these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient
    • …
    corecore