49 research outputs found

    Collapsibility to a subcomplex of a given dimension is NP-complete

    Full text link
    In this paper we extend the works of Tancer and of Malgouyres and Franc\'es, showing that (d,k)(d,k)-collapsibility is NP-complete for d≥k+2d\geq k+2 except (2,0)(2,0). By (d,k)(d,k)-collapsibility we mean the following problem: determine whether a given dd-dimensional simplicial complex can be collapsed to some kk-dimensional subcomplex. The question of establishing the complexity status of (d,k)(d,k)-collapsibility was asked by Tancer, who proved NP-completeness of (d,0)(d,0) and (d,1)(d,1)-collapsibility (for d≥3d\geq 3). Our extended result, together with the known polynomial-time algorithms for (2,0)(2,0) and d=k+1d=k+1, answers the question completely

    Leibniz International Proceedings in Information, LIPIcs

    Get PDF
    We prove that for every d ≥ 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d ≥ 2 and k ≥ 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d ≥ 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes

    Parametrized Complexity of Expansion Height

    Get PDF
    Deciding whether two simplicial complexes are homotopy equivalent is a fundamental problem in topology, which is famously undecidable. There exists a combinatorial refinement of this concept, called simple-homotopy equivalence: two simplicial complexes are of the same simple-homotopy type if they can be transformed into each other by a sequence of two basic homotopy equivalences, an elementary collapse and its inverse, an elementary expansion. In this article we consider the following related problem: given a 2-dimensional simplicial complex, is there a simple-homotopy equivalence to a 1-dimensional simplicial complex using at most p expansions? We show that the problem, which we call the erasability expansion height, is W[P]-complete in the natural parameter p

    Shellability is NP-Complete

    Get PDF
    We prove that for every d >= 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d >= 2 and k >= 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d >= 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes

    Hardness of Approximation for Morse Matching

    Full text link
    Discrete Morse theory has emerged as a powerful tool for a wide range of problems, including the computation of (persistent) homology. In this context, discrete Morse theory is used to reduce the problem of computing a topological invariant of an input simplicial complex to computing the same topological invariant of a (significantly smaller) collapsed cell or chain complex. Consequently, devising methods for obtaining gradient vector fields on complexes to reduce the size of the problem instance has become an emerging theme over the last decade. While computing the optimal gradient vector field on a simplicial complex is NP-hard, several heuristics have been observed to compute near-optimal gradient vector fields on a wide variety of datasets. Understanding the theoretical limits of these strategies is therefore a fundamental problem in computational topology. In this paper, we consider the approximability of maximization and minimization variants of the Morse matching problem, posed as open problems by Joswig and Pfetsch. We establish hardness results for Max-Morse matching and Min-Morse matching. In particular, we show that, for a simplicial complex with n simplices and dimension d≤3d \leq 3, it is NP-hard to approximate Min-Morse matching within a factor of O(n1−ϵ)O(n^{1-\epsilon}), for any ϵ>0\epsilon > 0. Moreover, using an L-reduction from Degree 3 Max-Acyclic Subgraph to Max-Morse matching, we show that it is both NP-hard and UGC-hard to approximate Max-Morse matching for simplicial complexes of dimension d≤2d \leq 2 within certain explicit constant factors.Comment: 20 pages, 1 figur

    Discrete Morse theory for the collapsibility of supremum sections

    Get PDF
    The Dushnik-Miller dimension of a poset ≤\le is the minimal number dd of linear extensions ≤1,…,≤d\le_1, \ldots , \le_d of ≤\le such that ≤\le is the intersection of ≤1,…,≤d\le_1, \ldots , \le_d. Supremum sections are simplicial complexes introduced by Scarf and are linked to the Dushnik-Miller as follows: the inclusion poset of a simplicial complex is of Dushnik-Miller dimension at most dd if and only if it is included in a supremum section coming from a representation of dimension dd. Collapsibility is a topoligical property of simplicial complexes which has been introduced by Whitehead and which resembles to shellability. While Ossona de Mendez proved in that a particular type of supremum sections are shellable, we show in this article that supremum sections are in general collapsible thanks to the discrete Morse theory developped by Forman
    corecore