1,004,707 research outputs found

    Skyrmion collapse

    Full text link
    We investigate the topological change of a Belavin-Polyakov skyrmion under the action of a spin-polarized current. The dynamics is described by the Schr\"odinger equation for the electrons carrying the current coupled to the Landau-Lifshitz equation for the evolution of the magnetic texture in a square lattice. We show that the addition of an exchange dissipation term, tends to smooth the transition from the skyrmion state to the ferromagnetic state. We demonstrate that this topological change, in the continuum dissipationless limit, can be described as a self-similar finite-time singularity by which the skyrmion core collapses.Comment: 9 pages, 6 figures; v2. discussion added (the title of the published version is "Skyrmion to ferromagnetic state transition: A description of the topological change as a finite-time singularity in the skyrmion dynamics"

    A Lagrangian Dynamical Theory for the Mass Function of Cosmic Structures: I Dynamics

    Get PDF
    A new theory for determining the mass function of cosmic structures is presented. It relies on a realistic treatment of collapse dynamics. Gravitational collapse is analyzed in the Lagrangian perturbative framework. Lagrangian perturbations provide an approximation of truncated type, i.e. small-scale structure is filtered out. The collapse time is suitably defined as the instant at which orbit crossing takes place. The convergence of the Lagrangian series in predicting the collapse time of a homogeneous ellipsoid is demonstrated; it is also shown that third-order calculations are necessary in predicting collapse. Then, the Lagrangian prediction, with a correction for quasi-spherical perturbations, can be used to determine the collapse time of a homogeneous ellipsoid in a fast and precise way. Furthermore, ellipsoidal collapse can be considered as a particular truncation of the Lagrangian series. Gaussian fields with scale-free power spectra are then considered. The Lagrangian series for the collapse time is found to converge when the collapse time is not large. In this case, ellipsoidal collapse gives a fast and accurate approximation of the collapse time; spherical collapse is found to poorly reproduce the collapse time, even in a statistical sense. Analytical fits of the distribution functions of the inverse collapse times, as predicted by the ellipsoid model and by third-order Lagrangian theory, are given. These will be necessary for a determination of the mass function, which will be given in paper II.Comment: 18 pages, Latex, uses mn.sty and psfig, 7 postscript figures (fig. 2 and 3 not complete). Revised version, stylistic changes. MNRAS, in pres

    Fragmentation Instability of Molecular Clouds: Numerical Simulations

    Full text link
    We simulate fragmentation and gravitational collapse of cold, magnetized molecular clouds. We explore the nonlinear development of an instability mediated by ambipolar diffusion, in which the collapse rate is intermediate to fast gravitational collapse and slow quasistatic collapse. Initially uniform stable clouds fragment into elongated clumps with masses largely determined by the cloud temperature, but substantially larger than the thermal Jeans mass. The clumps are asymmetric, with significant rotation and vorticity, and lose magnetic flux as they collapse. The clump shapes, intermediate collapse rates, and infall profiles may help explain observations not easily fit by contemporary slow or rapid collapse models.Comment: 25pp, 20 small eps figures, in press ApJ, April 1, 200
    corecore