135 research outputs found

    Collapse-binding quantum commitments without random oracles

    Get PDF
    We construct collapse-binding commitments in the standard model. Collapse-binding commitments were introduced by Unruh (Eurocrypt 2016) to model the computational-binding property of commitments against quantum adversaries, but only constructions in the random oracle model were known. Furthermore, we show that collapse-binding commitments imply selected other security definitions for quantum commitments, answering an open question by Unruh (Eurocrypt 2016)

    Quantum Lightning Never Strikes the Same State Twice

    Get PDF
    Public key quantum money can be seen as a version of the quantum no-cloning theorem that holds even when the quantum states can be verified by the adversary. In this work, investigate quantum lightning, a formalization of "collision-free quantum money" defined by Lutomirski et al. [ICS'10], where no-cloning holds even when the adversary herself generates the quantum state to be cloned. We then study quantum money and quantum lightning, showing the following results: - We demonstrate the usefulness of quantum lightning by showing several potential applications, such as generating random strings with a proof of entropy, to completely decentralized cryptocurrency without a block-chain, where transactions is instant and local. - We give win-win results for quantum money/lightning, showing that either signatures/hash functions/commitment schemes meet very strong recently proposed notions of security, or they yield quantum money or lightning. - We construct quantum lightning under the assumed multi-collision resistance of random degree-2 systems of polynomials. - We show that instantiating the quantum money scheme of Aaronson and Christiano [STOC'12] with indistinguishability obfuscation that is secure against quantum computers yields a secure quantum money schem

    Commitments to Quantum States

    Get PDF
    What does it mean to commit to a quantum state? In this work, we propose a simple answer: a commitment to quantum messages is binding if, after the commit phase, the committed state is hidden from the sender's view. We accompany this new definition with several instantiations. We build the first non-interactive succinct quantum state commitments, which can be seen as an analogue of collision-resistant hashing for quantum messages. We also show that hiding quantum state commitments (QSCs) are implied by any commitment scheme for classical messages. All of our constructions can be based on quantum-cryptographic assumptions that are implied by but are potentially weaker than one-way functions. Commitments to quantum states open the door to many new cryptographic possibilities. Our flagship application of a succinct QSC is a quantum-communication version of Kilian's succinct arguments for any language that has quantum PCPs with constant error and polylogarithmic locality. Plugging in the PCP theorem, this yields succinct arguments for NP under significantly weaker assumptions than required classically; moreover, if the quantum PCP conjecture holds, this extends to QMA. At the heart of our security proof is a new rewinding technique for extracting quantum information
    corecore