1,989 research outputs found

    Improving Digital Decision Making Through Situational Awareness

    Get PDF
    Technical advances in Information and Communication Technology have enabled the collection and storage of large amounts of data, rising hopes of digitalising and thus potentially improving decision making and related support systems. Unfortunately however, the pre-existing gap between required decision making knowledge and the useful information provided by current technologies appears to increase rather than contract. Thus, the multitude of patterns presently provided by current data analytics techniques do not deliver an adequate set of scenarios to enable effective decision making by humans. This paper advocates a digital decision analytics solution featuring the use of Situated Logic to create ‘narratives’ describing the meaning of data analytics results and the use of Channel Theory in order to support adequate situational awareness. This approach is explained in the context of a System-of-Systems paradigm highly relevant to today’s typically complex clusters of distributed collaborative decision making centres and their associated decision support systems

    Customized Co-Simulation Environment for Autonomous Driving Algorithm Development and Evaluation

    Full text link
    Increasing the implemented SAE level of autonomy in road vehicles requires extensive simulations and verifications in a realistic simulation environment before proving ground and public road testing. The level of detail in the simulation environment helps ensure the safety of a real-world implementation and reduces algorithm development cost by allowing developers to complete most of the validation in the simulation environment. Considering sensors like camera, LIDAR, radar, and V2X used in autonomous vehicles, it is essential to create a simulation environment that can provide these sensor simulations as realistically as possible. While sensor simulations are of crucial importance for perception algorithm development, the simulation environment will be incomplete for the simulation of holistic AV operation without being complemented by a realistic vehicle dynamic model and traffic cosimulation. Therefore, this paper investigates existing simulation environments, identifies use case scenarios, and creates a cosimulation environment to satisfy the simulation requirements for autonomous driving function development using the Carla simulator based on the Unreal game engine for the environment, Sumo or Vissim for traffic co-simulation, Carsim or Matlab, Simulink for vehicle dynamics co-simulation and Autoware or the author or user routines for autonomous driving algorithm co-simulation. As a result of this work, a model-based vehicle dynamics simulation with realistic sensor simulation and traffic simulation is presented. A sensor fusion methodology is implemented in the created simulation environment as a use case scenario. The results of this work will be a valuable resource for researchers who need a comprehensive co-simulation environment to develop connected and autonomous driving algorithms

    Virtuality in human supervisory control: Assessing the effects of psychological and social remoteness

    Get PDF
    Virtuality would seem to offer certain advantages for human supervisory control. First, it could provide a physical analogue of the 'real world' environment. Second, it does not require control room engineers to be in the same place as each other. In order to investigate these issues, a low-fidelity simulation of an energy distribution network was developed. The main aims of the research were to assess some of the psychological concerns associated with virtual environments. First, it may result in the social isolation of the people, and it may have dramatic effects upon the nature of the work. Second, a direct physical correspondence with the 'real world' may not best support human supervisory control activities. Experimental teams were asked to control an energy distribution network. Measures of team performance, group identity and core job characteristics were taken. In general terms, the results showed that teams working in the same location performed better than team who were remote from one another
    • …
    corecore