3,792 research outputs found

    Cognitive load theory and multimedia learning, task characteristics, and learning engagement: The current state of the art

    Get PDF
    Kirschner, F., Kester, L., & Corbalan, G. (2011). Cognitive load theory and multimedia learning, task characteristics, and learner engagement: The current state of the art. Computers in Human Behavior, 27, 1-4. doi:10.1016/j.chb.2010.05.003This special issue consists of 16 empirical papers, as well as a discussion based on the Third International Cognitive Load Theory Conference held at the Open Universiteit (Heerlen, The Netherlands) in 2009. All papers focus on improving instructional design from a cognitive load theory (CLT: Sweller, 1988; Sweller, Van Merriënboer, & Paas, 1998; Van Merriënboer & Sweller, 2005) perspective. They cover a wide variety of topics in which learner characteristics, tasks characteristics, and the interaction between both are studied in, new, innovative, but also traditional ways, thereby providing an overview of the current state of the art on CLT research. The overarching goal of all studies is to gain more understanding and insight into the optimal conditions under which learning can be successful, and students will be able to apply their acquired knowledge and skills in new or familiar problem solving situations. Together, the papers comprise three ways in which this overarching goal is reached: (1) by studying multimedia learning environments, (2) by studying different characteristics of a learning task and, (3) by studying how learners can be actively engaged in the learning process. Although, the research focus of most papers fit nicely within these research topics, some overlap is inevitable. The categorization has been made on the basis of the most prominent research focus and findings of each study

    Competency level of technological pedagogical contents knowledge (TPCK) framework amongst graduate teachers

    Get PDF
    This article propose a framework for educational technology based on Shulman’s formulation of ‘‘pedagogical content knowledge’’ and extend it to the integration of technology into it. It attempts to capture some of the essential qualities of teacher knowledge required for technology integration in teaching. Briefly, that thoughtful pedagogical uses of technology require the development of a complex, situated form of knowledge that we call Technological Pedagogical Content Knowledge (TPCK). The TPCK framework has much to offer to discussions of technology integration at multiple levels: theoretical, pedagogical, and methodological as well as the complex roles of, and interplay among, three main components of learning environments: content, pedagogy, and technology

    DIGITAL: multidisciplinary and multidimensional in the classrooms

    Get PDF
    In this paper our aim is to analyse and present some pedagogical paths that prefigure and guide the teaching-learning devices developed "around" the digital tools. In this context issues related to the implementation with teaching methodologies and teaching techniques acquire a new dimension due to the need of transpose them into online learning environments (technologies to teach to technologies to learn). This starting point is a deep understanding from the analysis of actors in the online learning process: student, teacher, platform and e- contents. Thus, it is our goal in this chapter to promote digital education, think of teaching methods, tools and learning processes, to adapted to eLearninginfo:eu-repo/semantics/publishedVersio

    Learning Through Rich Environments

    No full text
    Research into games in education most frequently expresses itself in the form of noting that games interest and motivate, and that we might therefore find the learning process improved if we were to use games as a vehicle for the delivery of learning content. We do not wish to take this approach, but to analyse what it is that makes games interesting and motivating and apply this in the context of designing learning scenarios. Many papers propose taxonomies of game style and criteria for good game design, tending to list good ideas and observed issues, but meeting difficulties when trying to generalise. We review some of the more important contributions in the area, and distil these into models to help us understand what's involved by defining the concept of a “Rich Environment.” We conclude with an example of how these models may be applied to the design of a learning environment

    Management learning at the speed of life:Designing reflective, creative, and collaborative spaces for millenials

    Get PDF
    This paper introduces the concept of "management learning at the speed of life" as a metaphor to inspire millenials. Millenials may face three major problems in relation to management learning: lack of concentration, lack of engagement, and lack of socialization. Management learning at the speed of life addresses these potential problems through three dimensions: reflective, creative, and collaborative learning. This paper illustrates the benefits of reflective, creative, and collaborative spaces for millenials using practices from leadership and personal development courses that were offered over seven years in Canada, Turkey, and the UK. These courses incorporated the latest technology that brought the course activities up to the speed of life

    iTeaching and Learning: Collegiate Instruction Incorporating Mobile Tablets

    Get PDF
    Final version available from: http://hdl.handle.net/1805/15630Mobile tablets will revolutionize higher education instruction across the academy, in some instances providing new solutions to accepted instructional limitations, in others eliminating unacknowledged hindrances, and in still others creating new challenges. Instructors at Indiana University--Purdue University Indianapolis (IUPUI) have been using iPads for instruction, including library instruction, since the fall of 2010. An eight-member group of faculty in art, music, communication studies, tourism management, physical education, education, organizational leadership and supervision, and the University Library have pioneered the institution's use of mobile tablets, iPads, in the classroom. Chapter 9 of Library Technology Reports (vol. 48, no. 8) "Rethinking Reference and Instruction with Tablets" provides insights into how these and other disciplines are using iPads to create new transformative learning experiences. This chapter includes findings of a study on student perceptions of learning and engagement during instruction incorporating the use of iPads across disciplines

    An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks

    Get PDF
    Cognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ameliorated by changes in long-term memory associated with learning. Initially, cognitive load theory's view of human cognitive architecture was assumed to apply to all categories of information. Based on Geary's (Educational Psychologist 43, 179-195 2008; 2011) evolutionary account of educational psychology, this interpretation of human cognitive architecture requires amendment. Working memory limitations may be critical only when acquiring novel information based on culturally important knowledge that we have not specifically evolved to acquire. Cultural knowledge is known as biologically secondary information. Working memory limitations may have reduced significance when acquiring novel
    corecore