410 research outputs found

    Geoweb 2.0 for Participatory Urban Design: Affordances and Critical Success Factors

    Full text link
    In this paper, we discuss the affordances of open-source Geoweb 2.0 platforms to support the participatory design of urban projects in real-world practices.We first introduce the two open-source platforms used in our study for testing purposes. Then, based on evidence from five different field studies we identify five affordances of these platforms: conversations on alternative urban projects, citizen consultation, design empowerment, design studio learning and design research. We elaborate on these in detail and identify a key set of success factors for the facilitation of better practices in the future

    The Semantic Student: Using Knowledge Modeling Activities to Enhance Enquiry-Based Group Learning in Engineering Education

    Get PDF
    This paper argues that training engineering students in basic knowledge modeling techniques, using linked data principles, and semantic Web tools – within an enquiry-based group learning environment – enables them to enhance their domain knowledge, and their meta-cognitive skills. Knowledge modeling skills are in keeping with the principles of Universal Design for instruction. Learners are empowered with the regulation of cognition as they become more aware of their own development. This semantic student approach was trialed with a group of 3rd year Computer Engineering Students taking a module on computer architecture. An enquiry-based group learning activity was developed to help learners meet selected module learning outcomes. Learners were required to use semantic feature analysis and linked data principles to create a visual model of their knowledge structure. Results show that overall student attainment was increased when knowledge modeling activities were included as part of the learning process. A recommendation for practice to incorporate knowledge modeling as a learning strategy within an overall engineering curriculum framework is described. This can be achieved using semantic Web technologies such as semantic wikis and linked data tools

    Using LEL and scenarios to derive mathematical programming models. Application in a fresh tomato packing problem

    Get PDF
    [EN] Mathematical programming models are invaluable tools at decision making, assisting managers to uncover otherwise unattainable means to optimize their processes. However, the value they provide is only as good as their capacity to capture the process domain. This information can only be obtained from stakeholders, i.e., clients or users, who can hardly communicate the requirements clearly and completely. Besides, existing conceptual models of mathematical programming models are not standardized, nor is the process of deriving the mathematical programming model from the concept model, which remains ad hoc. In this paper, we propose an agile methodology to construct mathematical programming models based on two techniques from requirements engineering that have been proven effective at requirements elicitation: the language extended lexicon (LEL) and scenarios. Using the pair of LEL + scenarios allows to create a conceptual model that is clear and complete enough to derive a mathematical programming model that effectively captures the business domain. We also define an ontology to describe the pair LEL + scenarios, which has been implemented with a semantic mediawiki and allows the collaborative construction of the conceptual model and the semi-automatic derivation of mathematical programming model elements. The process is applied and validated in a known fresh tomato packing optimization problem. This proposal can be of high relevance for the development and implementation of mathematical programming models for optimizing agriculture and supply chain management related processes in order to fill the current gap between mathematical programming models in the theory and the practice.This work was supported by the European Commission, project RUC-APS, grant number 691249, funded by the European Union's research and innovation programme under the H2020 Marie SklodowskaCurie Actions; and the Argentinian National Agency for Scientific and Technical Promotion (ANPCyT), grant number PICT-2015-3000.Garrido, A.; Antonelli, L.; Martin, J.; Alemany Díaz, MDM.; Mula, J. (2020). Using LEL and scenarios to derive mathematical programming models. Application in a fresh tomato packing problem. Computers and Electronics in Agriculture. 170:1-14. https://doi.org/10.1016/j.compag.2020.105242S114170Alemany, M., Ortiz, A., & Fuertes-Miquel, V. S. (2018). A decision support tool for the order promising process with product homogeneity requirements in hybrid Make-To-Stock and Make-To-Order environments. Application to a ceramic tile company. Computers & Industrial Engineering, 122, 219-234. doi:10.1016/j.cie.2018.05.040Alemany, M. M. E., Alarcón, F., Lario, F.-C., & Boj, J. J. (2011). An application to support the temporal and spatial distributed decision-making process in supply chain collaborative planning. Computers in Industry, 62(5), 519-540. doi:10.1016/j.compind.2011.02.002Alemany, M. M. E., Lario, F.-C., Ortiz, A., & Gómez, F. (2013). Available-To-Promise modeling for multi-plant manufacturing characterized by lack of homogeneity in the product: An illustration of a ceramic case. Applied Mathematical Modelling, 37(5), 3380-3398. doi:10.1016/j.apm.2012.07.022Alexander, I., & Maiden, N. (2004). Scenarios, stories, and use cases: the modern basis for system development. Computing and Control Engineering, 15(5), 24-29. doi:10.1049/cce:20040505Armengol, Á., Mula, J., Díaz-Madroñero, M., & Pelkonen, J. (2015). Conceptual Model for Associated Costs of the Internationalisation of Operations. Enhancing Synergies in a Collaborative Environment, 181-188. doi:10.1007/978-3-319-14078-0_21Baraniuk, R. G., Burrus, C. S., Johnson, D. H., & Jones, D. L. (2004). Signal processing education - Sharing knowledge and building communities in Signal Processing. IEEE Signal Processing Magazine, 21(5), 10-16. doi:10.1109/msp.2004.1328080Cid-Garcia, N. M., & Ibarra-Rojas, O. J. (2019). An integrated approach for the rectangular delineation of management zones and the crop planning problems. Computers and Electronics in Agriculture, 164, 104925. doi:10.1016/j.compag.2019.104925Dominguez-Ballesteros, B., Mitra, G., Lucas, C., & Koutsoukis, N.-S. (2002). Modelling and solving environments for mathematical programming (MP): a status review and new directions. Journal of the Operational Research Society, 53(10), 1072-1092. doi:10.1057/palgrave.jors.2601361Esteso, A., Alemany, M. M. E., Ortiz, Á., & Peidro, D. (2018). A multi-objective model for inventory and planned production reassignment to committed orders with homogeneity requirements. Computers & Industrial Engineering, 124, 180-194. doi:10.1016/j.cie.2018.07.025Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. doi:10.1080/00207543.2018.1447706Grillo, H., Alemany, M. M. E., Ortiz, A., & Fuertes-Miquel, V. S. (2017). Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Applied Mathematical Modelling, 49, 255-278. doi:10.1016/j.apm.2017.04.037Grossmann, I. (2005). Enterprise-wide optimization: A new frontier in process systems engineering. AIChE Journal, 51(7), 1846-1857. doi:10.1002/aic.10617Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199-220. doi:10.1006/knac.1993.1008Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing? International Journal of Human-Computer Studies, 43(5-6), 907-928. doi:10.1006/ijhc.1995.1081Hernández, J. E., Mula, J., Ferriols, F. J., & Poler, R. (2008). A conceptual model for the production and transport planning process: An application to the automobile sector. Computers in Industry, 59(8), 842-852. doi:10.1016/j.compind.2008.06.004Laporti, V., Borges, M. R. S., & Braganholo, V. (2009). Athena: A collaborative approach to requirements elicitation. Computers in Industry, 60(6), 367-380. doi:10.1016/j.compind.2009.02.011Do Prado Leite, J. C. S., Hadad, G. D. S., Doorn, J. H., & Kaplan, G. N. (2000). A Scenario Construction Process. Requirements Engineering, 5(1), 38-61. doi:10.1007/pl00010342Lenat, D. B. (1995). CYC. Communications of the ACM, 38(11), 33-38. doi:10.1145/219717.219745Lesh, R. (1981). Applied mathematical problem solving. Educational Studies in Mathematics, 12(2), 235-264. doi:10.1007/bf00305624Lezoche, M., Yahia, E., Aubry, A., Panetto, H., & Zdravković, M. (2012). Conceptualising and structuring semantics in cooperative enterprise information systems models. Computers in Industry, 63(8), 775-787. doi:10.1016/j.compind.2012.08.006Liu, L., Wang, H., & Xing, S. (2019). Optimization of distribution planning for agricultural products in logistics based on degree of maturity. Computers and Electronics in Agriculture, 160, 1-7. doi:10.1016/j.compag.2019.02.030Miller, G. A. (1995). WordNet. Communications of the ACM, 38(11), 39-41. doi:10.1145/219717.219748Miller, W. A., Leung, L. C., Azhar, T. M., & Sargent, S. (1997). Fuzzy production planning model for fresh tomato packing. International Journal of Production Economics, 53(3), 227-238. doi:10.1016/s0925-5273(97)00110-2Moskaliuk, J., Kimmerle, J., & Cress, U. (2009). Wiki-supported learning and knowledge building: effects of incongruity between knowledge and information. Journal of Computer Assisted Learning, 25(6), 549-561. doi:10.1111/j.1365-2729.2009.00331.xMula, J., Poler, R., García-Sabater, J. P., & Lario, F. C. (2006). Models for production planning under uncertainty: A review. International Journal of Production Economics, 103(1), 271-285. doi:10.1016/j.ijpe.2005.09.001Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390. doi:10.1016/j.ejor.2009.09.008MUNDI, I., ALEMANY, M. M. E., BOZA, A., & POLER, R. (2013). A Model-Driven Decision Support System for the Master Planning of Ceramic Supply Chains with Non-uniformity of Finished Goods. Studies in Informatics and Control, 22(2). doi:10.24846/v22i2y201305Munir, K., & Sheraz Anjum, M. (2018). The use of ontologies for effective knowledge modelling and information retrieval. Applied Computing and Informatics, 14(2), 116-126. doi:10.1016/j.aci.2017.07.003Perales, D. D. P., Esteban, F.-C. L., Díaz, M. M. E. A., & Hernández, J. E. (2012). Framework for Modelling the Decision. International Journal of Decision Support System Technology, 4(2), 59-77. doi:10.4018/jdsst.2012040104Raghunathan, S. (1996). A structured modeling based methodology to design decision support systems. Decision Support Systems, 17(4), 299-312. doi:10.1016/0167-9236(96)00006-1Schneeweiss, C. (2003). Distributed decision making in supply chain management. International Journal of Production Economics, 84(1), 71-83. doi:10.1016/s0925-5273(02)00381-xSchneeweiss, C. (2003). Distributed decision making––a unified approach. European Journal of Operational Research, 150(2), 237-252. doi:10.1016/s0377-2217(02)00501-5Schön, E.-M., Thomaschewski, J., & Escalona, M. J. (2017). Agile Requirements Engineering: A systematic literature review. Computer Standards & Interfaces, 49, 79-91. doi:10.1016/j.csi.2016.08.011Shapiro, J. F. (1993). Chapter 8 Mathematical programming models and methods for production planning and scheduling. Handbooks in Operations Research and Management Science, 371-443. doi:10.1016/s0927-0507(05)80188-4Udias, A., Pastori, M., Dondeynaz, C., Carmona Moreno, C., Ali, A., Cattaneo, L., & Cano, J. (2018). A decision support tool to enhance agricultural growth in the Mékrou river basin (West Africa). Computers and Electronics in Agriculture, 154, 467-481. doi:10.1016/j.compag.2018.09.03

    Scientific Collaborations: principles of WikiBridge Design

    Full text link
    Semantic wikis, wikis enhanced with Semantic Web technologies, are appropriate systems for community-authored knowledge models. They are particularly suitable for scientific collaboration. This paper details the design principles ofWikiBridge, a semantic wiki.Comment: in Adrian Paschke, Albert Burger begin_of_the_skype_highlighting end_of_the_skype_highlighting, Andrea Splendiani, M. Scott Marshall, Paolo Romano: Proceedings of the 3rd International Workshop on Semantic Web Applications and Tools for the Life Sciences, Berlin,Germany, December 8-10, 201

    Onto Collab: Strategic review oriented collaborative knowledge modeling using ontologies

    Get PDF
    Modeling efficient knowledge bases for improving the semantic property of the World Wide Web is mandatory for promoting innovations and developments in World Wide Web. There is a need for efficient and organized modeling of the knowledge bases. In this paper, a strategy Onto Collab is proposed for construction of knowledge bases using ontology modeling. Ontologies are visualized as the basic building blocks of the knowledge in the web. The cognitive bridge between the human conceptual understanding of real world data and the processable data by computing systems is represented by Ontologies. A domain is visualized as a collection of similar ontologies. A review based strategy is proposed over a secure messaging system to author ontologies and a platform for retracing the domain ontologies as individuals and as a team is proposed. Evaluations for ontologies constructed pertaining to a domain for non-wiki knowledge bases is carried out

    Semantic Mashup with the Online IDE WikiNEXT

    Get PDF
    Demo sessionThe proposed demonstration requests DBPedia.org, gets the results and uses them to populate wiki pages with semantic annotations using RDFaLite. These annotations are persisted in a RDF store and we will show how this data can be reused by other applications, e.g. for a semantic mashup that displays all collected metadata about cities on a single map page. It has been developed using WikiNEXT, a mix between a semantic wiki and a web-based IDE. The tool is online 1 , open source 2 ; screencasts are available on YouTube (look for "WikiNext")
    corecore