836 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Energy efficient scheduling and allocation of tasks in sensor cloud

    Get PDF
    Wireless Sensor Network (WSN) is a class of ad hoc networks that has capability of self-organizing, in-network data processing, and unattended environment monitoring. Sensor-cloud is a cloud of heterogeneous WSNs. It is attractive as it can change the computation paradigm of wireless sensor networks. In Sensor-Cloud, to gain profit from underutilized WSNs, multiple WSN owners collaborate to provide a cloud service. Sensor Cloud users can simply rent the sensing services which eliminates the cost of ownership, enabling the usage of large scale sensor networks become affordable. The nature of Sensor-Cloud enables resource sharing and allows virtual sensors to be scaled up or down. It abstracts different platforms hence giving the impression of a homogeneous network. Further in multi-application environment, users of different applications may require data based on different needs. Hence scheduling scheme in WSNs is required which serves maximum users of various applications. We have proposed a scheduling scheme suitable for the multiple applications in Sensor Cloud. Scheduling scheme is based on TDMA which considers fine granularity of tasks. The performance evaluation shows the better response time, throughput and overall energy consumption as compared to the base case we developed. On the other hand, to minimize the energy consumption in WSN, we design an allocation scheme. In Sensor Cloud, we consider sparsely and densely deployed WSNs working together. Also, in a WSN there might be sparsely and densely deployed zones. Based on spatial correlation and with the help of Voronoi diagram, we turn on minimum number of sensors hence increasing WSN lifetime and covering almost 100 percent area. The performance evaluation of allocation scheme shows energy efficiency by selecting fewer nodes in comparison to other work --Abstract, page iv
    • …
    corecore