47,952 research outputs found

    Collaborative knowledge as a service applied to the disaster management domain

    Get PDF
    Cloud computing offers services which promise to meet continuously increasing computing demands by using a large number of networked resources. However, data heterogeneity remains a major hurdle for data interoperability and data integration. In this context, a Knowledge as a Service (KaaS) approach has been proposed with the aim of generating knowledge from heterogeneous data and making it available as a service. In this paper, a Collaborative Knowledge as a Service (CKaaS) architecture is proposed, with the objective of satisfying consumer knowledge needs by integrating disparate cloud knowledge through collaboration among distributed KaaS entities. The NIST cloud computing reference architecture is extended by adding a KaaS layer that integrates diverse sources of data stored in a cloud environment. CKaaS implementation is domain-specific; therefore, this paper presents its application to the disaster management domain. A use case demonstrates collaboration of knowledge providers and shows how CKaaS operates with simulation models

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    OpenKnowledge at work: exploring centralized and decentralized information gathering in emergency contexts

    Get PDF
    Real-world experience teaches us that to manage emergencies, efficient crisis response coordination is crucial; ICT infrastructures are effective in supporting the people involved in such contexts, by supporting effective ways of interaction. They also should provide innovative means of communication and information management. At present, centralized architectures are mostly used for this purpose; however, alternative infrastructures based on the use of distributed information sources, are currently being explored, studied and analyzed. This paper aims at investigating the capability of a novel approach (developed within the European project OpenKnowledge1) to support centralized as well as decentralized architectures for information gathering. For this purpose we developed an agent-based e-Response simulation environment fully integrated with the OpenKnowledge infrastructure and through which existing emergency plans are modelled and simulated. Preliminary results show the OpenKnowledge capability of supporting the two afore-mentioned architectures and, under ideal assumptions, a comparable performance in both cases
    • …
    corecore