4,320 research outputs found

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Technology Integration around the Geographic Information: A State of the Art

    Get PDF
    One of the elements that have popularized and facilitated the use of geographical information on a variety of computational applications has been the use of Web maps; this has opened new research challenges on different subjects, from locating places and people, the study of social behavior or the analyzing of the hidden structures of the terms used in a natural language query used for locating a place. However, the use of geographic information under technological features is not new, instead it has been part of a development and technological integration process. This paper presents a state of the art review about the application of geographic information under different approaches: its use on location based services, the collaborative user participation on it, its contextual-awareness, its use in the Semantic Web and the challenges of its use in natural languge queries. Finally, a prototype that integrates most of these areas is presented

    Global-Scale Resource Survey and Performance Monitoring of Public OGC Web Map Services

    Full text link
    One of the most widely-implemented service standards provided by the Open Geospatial Consortium (OGC) to the user community is the Web Map Service (WMS). WMS is widely employed globally, but there is limited knowledge of the global distribution, adoption status or the service quality of these online WMS resources. To fill this void, we investigated global WMSs resources and performed distributed performance monitoring of these services. This paper explicates a distributed monitoring framework that was used to monitor 46,296 WMSs continuously for over one year and a crawling method to discover these WMSs. We analyzed server locations, provider types, themes, the spatiotemporal coverage of map layers and the service versions for 41,703 valid WMSs. Furthermore, we appraised the stability and performance of basic operations for 1210 selected WMSs (i.e., GetCapabilities and GetMap). We discuss the major reasons for request errors and performance issues, as well as the relationship between service response times and the spatiotemporal distribution of client monitoring sites. This paper will help service providers, end users and developers of standards to grasp the status of global WMS resources, as well as to understand the adoption status of OGC standards. The conclusions drawn in this paper can benefit geospatial resource discovery, service performance evaluation and guide service performance improvements.Comment: 24 pages; 15 figure

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Geographical Information Systems: the past, present and future

    Get PDF
    The main challenges of the XXI century are caused by the large amount of geospatial information through a GIS. Throughout time there have been many attempts to define Geographic Information Systems (GIS). Yet there is still no consensus on its definition and to restrict it to one is limited. In the acronym - Geographic Information Systems - geographic refers to the Earth's surface and near-surface, therefore, all human production and activity, as well as non-human are possible to spatialize using GIS.info:eu-repo/semantics/publishedVersio

    Geographic Information Systems

    Get PDF
    One of the main challenges of the 21st century are caused by the large amount of geospatial information through a GIS. Throughout time there have been many attempts to define Geographic Information Systems (GIS). Yet there is no consensus on define it and restrict it to one definition is limited. In the acronym - Geographic Information Systems - the geographic refers to the Earth’s surface and near-surface, therefore, all human production and activity, and non-human are possible patialization in GIS.info:eu-repo/semantics/publishedVersio

    Geospatial information infrastructures to address spatial needs in health: Collaboration, challenges and opportunities

    Get PDF
    Most health-related issues such as public health outbreaks and epidemiological threats are better understood from a spatial–temporal perspective and, clearly demand related geospatial datasets and services so that decision makers may jointly make informed decisions and coordinate response plans. Although current health applications support a kind of geospatial features, these are still disconnected from the wide range of geospatial services and datasets that geospatial information infrastructures may bring into health. In this paper we are questioning the hypothesis whether geospatial information infrastructures, in terms of standards-based geospatial services, technologies, and data models as operational assets already in place, can be exploited by health applications for which the geospatial dimension is of great importance. This may be certainly addressed by defining better collaboration strategies to uncover and promote geospatial assets to the health community. We discuss the value of collaboration, as well as the opportunities that geographic information infrastructures offer to address geospatial challenges in health applications

    Big Data Breaking Barriers – First step on a long trail

    Get PDF
    Most data sets and streams have a geospatial component. Some people even claim that about 80% of all data is related to location. In the era of Big Data this number might even be underestimated, as data sets interrelate and initially non-spatial data becomes indirectly geo-referenced. The optimal treatment of Big Data thus requires advanced methods and technologies for handling the geospatial aspects in data storage, processing, pattern recognition, prediction, visualisation and exploration. On the one hand, our work exploits earth and environmental sciences for existing interoperability standards, and the foundational data structures, algorithms and software that are required to meet these geospatial information handling tasks. On the other hand, we are concerned with the arising needs to combine human analysis capacities (intelligence augmentation) with machine power (artificial intelligence). This paper provides an overview of the emerging landscape and outlines our (Digital Earth) vision for addressing the upcoming issues. We particularly request the projection and re-use of the existing environmental, earth observation and remote sensing expertise in other sectors, i.e. to break the barriers of all of these silos by investigating integrated applications.JRC.H.6-Digital Earth and Reference Dat
    • 

    corecore